1,028 research outputs found

    Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes

    Get PDF
    In mammals, Robertsonian (Rb) translocation (the joining of two telo/acrocentric chromosomes at their centromere to form a metacentric) is the most effective process in chromosomal evolution leading to speciation; its occurrence also affects human health (through the induction of trisomies) and the fertility of farm animals. To understand the mechanism of Rb translocation, we used the house mouse as a model system and studied the organization of pericentromeric satellite DNAs (satDNA) of telocentrics and Rb chromosomes, both minor and major satDNA. The chromosome-orientation fluorescence in situ hybridization (CO-FISH) technique was used to analyze the major satDNA. To detect the very small amount of minor satDNA, a procedure was developed that combines CO-FISH with primed in situ labeling and conventional FISH and is five times more sensitive than the CO-FISH procedure alone. It was found that both the major and the minor satDNA tandem repeats are oriented head-to-tail in telocentric and Rb chromosomes, and their polarity is always the same relative to the centromere. We suggest that all tandemly repetitive satDNAs in a species probably are locked into such a symmetry constraint as a universal consequence of chromosomal evolution. Rb translocation breakpoints were found localized within the minor satDNA of telocentrics, and these sequences contributed symmetrically to the formation of the centromeric region of the Rb chromosomes. These results are important for an understanding of the geometry of Rb translocations and suggest the study of DNA orientation as a new tool for investigating these rearrangements

    The NOBOX protein becomes undetectable in developmentally competent antral and ovulated oocytes

    Get PDF
    The oocyte-specific NOBOX protein is an important player during oocyte growth. Its absence in Nobox-/- mice arrests the transition from primordial to growing follicles and down-regulates the expression of a number of genes, including Oct4, a transcription factor crucial in the acquisition of oocyte developmental competence. Despite its role during folliculogenesis, a clear description of the expression of NOBOX throughout oocyte growth is lacking. Here, we have analysed the pattern of expression of both the Nobox gene (qRT-PCR) and its protein (immunofluorescence) during folliculogenesis, classifying the oocytes based on their size (six classes: 10-30, 31-40, 41-50, 51-60, 61-70, 71-80 mm) and chromatin organisation (NSN, Non Surrounded Nucleolus or SN, Surrounded Nucleolus). Significant differences were observed in Nobox transcription in the group of 41-50 mm (NSN > SN), 71-80 mm (NSN > SN) and in developmentally incompetent metaphase II-derived NSN (MIINSN) or competent metaphase II-derived SN (MIISN) oocytes (MIINSN > MIISN). The NOBOX protein is expressed throughout oocyte growth in the nucleus of ovarian NSN and in MIINSN oocytes; in contrast, beginning with SN oocytes of 61-70 mm, it becomes almost undetectable. Our data, while being in line with the hypothesis of a regulative role of NOBOX on Oct4 gene expression at the primordial/primary stage, when both transcription factors are coincidentally expressed, also indicate that this role might not be maintained in the subsequent growing stages. Furthermore, the sharp difference of NOBOX expression in developmentally incompetent or competent oocytes makes this protein a putative marker of their quality

    What Pediatricians Should Know Before Studying Gut Microbiota

    Get PDF
    Billions of microorganisms, or "microbiota", inhabit the gut and affect its homeostasis, influencing, and sometimes causing if altered, a multitude of diseases. The genomes of the microbes that form the gut ecosystem should be summed to the human genome to form the hologenome due to their influence on human physiology; hence the term "microbiome" is commonly used to refer to the genetic make-up and gene-gene interactions of microbes. This review attempts to provide insight into this recently discovered vital organ of the human body, which has yet to be fully explored. We herein discuss the rhythm and shaping of the microbiome at birth and during the first years leading up to adolescence. Furthermore, important issues to consider for conducting a reliable microbiome study including study design, inclusion/exclusion criteria, sample collection, storage, and variability of different sampling methods as well as the basic terminology of molecular approaches, data analysis, and clinical interpretation of results are addressed. This basic knowledge aims to provide the pediatricians with a key tool to avoid data dispersion and pitfalls during child microbiota study

    Chronic cypermethrin exposure alters mouse embryonic stem cell growth kinetics, induces Phase II detoxification response and affects pluripotency and differentiation gene expression

    Get PDF
    Worldwide uncontrolled use of synthetic pyrethroids contaminates water and soil leading to health hazards. Cypermethrin (CYP), the most used pyrethroid, induces detrimental effects on adults and embryos at different stages of development of several vertebrate species. In Mammals, CYP-induced alterations have been previously described in adult somatic cells and in post-implantation embryos. It remains unknown whether CYP has effects during pre-implantation development. Studies to access pre-implantation embryo toxicity are complicated by the restricted number of blastocysts that may be obtained, either in vivo or in vitro. Embryonic stem cells (ESCs) are an in vitro model study that overcomes these limitations, as millions of pluripotent cells are available to the analysis. Also, ESCs maintain the same pluripotency characteristics and differentiation capacity of the inner cell mass (ICM) present in the blastocyst, from which they derive. In this work, using mouse R1 ESCs, we studied CYP-induced cell death, ROS production, the activation of oxidative stress-related and detoxification responses and the population growth kinetics following 72 h exposure at the 0.3 mM LD50 dose. Also, the expression levels of pluripotency genes in exposed ESCs and of markers of the three germ layers after their differentiation into embryoid bodies (EBs) were determined. Two apoptotic waves were observed at 12-24 h and at 72 h. The increase of ROS production, at 24 h until the end of the culture period, was accompanied by the induction, at 48 h, of redox-related Cat, Sod1, Sod2, Gpx1 and Gpx4 genes. Up-regulation of Cyp1b1, but not of Cyp1a1, phase I gene was detected at 72 h and induction of Nqo1, Gsta1 and Ugt1a6 phase II genes began at 24 h exposure. The results show that exposed R1 ESCs activate oxidative stress-related and detoxification responses, although not sufficient, during the culture period tested, to warrant recovery of the growth rate observed in untreated cells. Also, CYP exposure altered the expression of Oct-4 and Nanog pluripotency genes in ESCs and, when differentiated into EBs, the expression of Fgf5, Brachyury and Foxa2, early markers of the ectoderm, mesoderm and endoderm germ layers, respectively. NIH/3T3 cells, a differentiated cell line of embryonic origin, were used for comparison

    Nutrition in the First 1000 Days : The Origin of Childhood Obesity

    Get PDF
    Childhood obesity is a major global issue. Its incidence is constantly increasing, thereby offering a threatening public health perspective. The risk of developing the numerous chronic diseases associated with this condition from very early in life is significant. Although complex and multi-factorial, the pathophysiology of obesity recognizes essential roles of nutritional and metabolic aspects. Particularly, several risk factors identified as possible determinants of later-life obesity act within the first 1000 days of life (i.e., from conception to age 2 years). The purpose of this manuscript is to review those key mechanisms for which a role in predisposing children to obesity is supported by the most recent literature. Throughout the development of the human feeding environment, three different stages have been identified: (1) the prenatal period; (2) breast vs. formula feeding; and (3) complementary diet. A deep understanding of the specific nutritional challenges presented within each phase might foster the development of future preventive strategies

    Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents?

    Get PDF
    (1) Background: Pediatric obesity is an emerging public health issue, mainly related to western diet. A cross-sectional study was conducted to explore the association between macronutrients intake and cardiometabolic risk factors in obese adolescents. (2) Methods: Ninety-three Italian obese adolescents were recruited; anthropometric parameters, body composition, glucose and lipid metabolism profiles were measured. Macronutrients intake was estimated by a software-assisted analysis of a 120-item frequency questionnaire. The association between macronutrients and cardiometabolic risk factors was assessed by bivariate correlation, and multiple regression analysis was used to adjust for confounders such as age and sex. (3) Results: By multiple regression analysis, we found that higher energy and lower carbohydrate intakes predicted higher body mass index (BMI) z-score, p = 0.005, and higher saturated fats intake and higher age predicted higher HOmeostasis Model Assessment of insulin resistance (HOMA-IR) and lower QUantitative Insulin-sensitivity ChecK (QUICK) index, p = 0.001. In addition, a saturated fats intake <7% was associated with normal HOMA-IR, and a higher total fats intake predicted a higher HOMA of percent \u3b2-cell function (HOMA-\u3b2), p = 0.011. (4) Conclusions: Higher energy intake and lower carbohydrate dietary intake predicted higher BMI z-score after adjustment for age and sex. Higher total and saturated fats dietary intakes predicted insulin resistance, even after adjustment for confounding factors. A dietary pattern including appropriate high-quality carbohydrate and reduced saturated fat intakes could result in reduced cardiometabolic risk in obese adolescents

    Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is there a Winner?

    Get PDF
    Body shape index (ABSI) and triponderal mass index (TMI) have been recently associated with cardiovascular risk in adults. A cross-sectional study was conducted to evaluate the relationship between different anthropometric adiposity indexes and metabolic syndrome (MetS) in Caucasian obese children and adolescents. Consecutive obese children aged 657 years have been enrolled. Anthropometric parameters, body composition (by bioelectrical impedance), and systolic and diastolic blood pressure have been measured. Fasting blood samples have been analyzed for lipids, insulin, glucose. A multivariate logistic regression analyses, with body mass index z-score, waist to height ratio, ABSI z-score, TMI, conicity index as predictors for MetS (IDEFICS and IDF criteria according to age) has been performed. Four hundred and three (179 boys and 224 girls) obese children, aged 7\u201320 years, have been evaluated. When we explored the joint contribution of each anthropometric and adiposity index of interest and BMIz on the risk of MetS, we found that the inclusion of ABSIz improved the prediction of MetS compared to BMIz alone. ABSI-BMI can be a useful index for evaluating the relative contribution of central obesity to cardiometabolic risk in clinical management of obese children and adolescents

    Non-Coding RNA and Tumor Development in Neurofibromatosis Type 1: ANRIL Rs2151280 Is Associated with Optic Glioma Development and a Mild Phenotype in Neurofibromatosis Type 1 Patients

    Get PDF
    Non-coding RNAs (ncRNAs) are known to regulate gene expression at the transcriptional and post-transcriptional levels, chromatin remodeling, and signal transduction. The identification of different species of ncRNAs, microRNAs (miRNAs), circular RNAs (circRNAs), and long ncRNAs (lncRNAs)-and in some cases, their combined regulatory function on specific target genes-may help to elucidate their role in biological processes. NcRNAs' deregulation has an impact on the impairment of physiological programs, driving cells in cancer development. We here carried out a review of literature concerning the implication of ncRNAs on tumor development in neurofibromatosis type 1 (NF1), an inherited tumor predisposition syndrome. A number of miRNAs and a lncRNA has been implicated in NF1-associated tumors, such as malignant peripheral nerve sheath tumors (MPNSTs) and astrocytoma, as well as in the pathognomonic neurofibromas. Some authors reported that the lncRNA ANRIL was deregulated in the blood of NF1 patients with plexiform neurofibromas (PNFs), even if its role should be further elucidated. We here provided original data concerning the association of a specific genotype about ANRIL rs2151280 with the presence of optic gliomas and a mild expression of the NF1 phenotype. We also detected the LOH of ANRIL in different tumors from NF1 patients, supporting the involvement of ANRIL in some NF1-associated tumors. Our results suggest that ANRIL rs2151280 may be a potential diagnostic and prognostic marker, addressing early diagnosis of optic glioma and predicting the phenotype severity in NF1 patients
    • …
    corecore