92 research outputs found

    Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production

    Get PDF
    open2The increasing emergence of bacteria producing β-lactamases enzymes (BLEs), able to inactivate the available β-lactam antibiotics (BLAs), causing the hydrolytic opening of their β-lactam ring, is one of the global major warnings. According to Ambler classification, BLEs are grouped in serine-BLEs (SBLEs) of class A, C, and D, and metal-BLEs (MBLEs) of class B. A current strategy to restore no longer functioning BLAs consists of associating them to β-lactamase enzymes inhibitors (BLEsIs), which, interacting with BLEs, prevent them hydrolyzing to the associated antibiotic. Worryingly, the inhibitors that are clinically approved are very few and inhibit only most of class A and C SBLEs, leaving several class D and all MBLEs of class B untouched. Numerous non-clinically approved new molecules are in development, which have shown broad and ultra-broad spectrum of action, some of them also being active on the New Delhi metal-β-lactamase-1 (NDM-1), which can hydrolyze all available BLAs except for aztreonam. To not duplicate the existing review concerning this topic, we have herein examined BLEsIs by a chemistry approach. To this end, we have reviewed both the long-established synthesis adopted to prepare the old BLEsIs, those proposed to achieve the BLEsIs that are newly approved, and those recently reported to prepare the most relevant molecules yet in development, which have shown high potency, providing for each synthesis the related reaction scheme.openAlfei, Silvana; Zuccari, GuendalinaAlfei, Silvana; Zuccari, Guendalin

    Synthesis and Characterization of Pyrazole-Enriched Cationic Nanoparticles as New Promising Antibacterial Agent by Mutual Cooperation

    Get PDF
    A pyrazole derivative (CB1) was previously evaluated in vivo for various pharmacological activities (with the exception of antimicrobial effects), using DMSO as the administrative medium, mainly due to its water insolubility. Considering the global necessity for new antimicrobial agents, CB1 attracted our attention as a candidate to meet this need, mainly because the secondary amine group in its structure would make it possible to obtain its hydrochloride salt (CB1H), thus effortlessly solving its water-solubility drawbacks. In preliminary microbiologic investigations on Gram-negative and Gram-positive bacteria, CB1H displayed weak antibacterial effects on MDR isolates of Gram-positive species, nonetheless better than those displayed by the commonly-used available antibiotics. Therefore, aiming at improving such activity and extending the antibacterial spectrum of CB1H to Gram-negative pathogens, in this first work CB1 was strategically formulated in nanoparticles using a cationic copolymer (P7) previously developed by us, possessing potent broad-spectrum bactericidal activity. Using the nanoprecipitation method, CB1H-loaded polymer nanoparticles (CB1H-P7 NPs) were obtained, which were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to confirm the successful loading. Additionally, CB1H-P7 NPs were fully characterized in terms of morphology, size, polydispersity indices, surface charge, DL%, and EE%, as well as release and potentiometric profiles

    Pyrazole-Enriched Cationic Nanoparticles Induced Early- and Late-Stage Apoptosis in Neuroblastoma Cells at Sub-Micromolar Concentrations

    Get PDF
    Neuroblastoma (NB) is a severe form of tumor occurring mainly in young children and originating from nerve cells found in the abdomen or next to the spine. NB needs more effective and safer treatments, as the chance of survival against the aggressive form of this disease are very small. Moreover, when current treatments are successful, they are often responsible for unpleasant health problems which compromise the future and life of surviving children. As reported, cationic macromolecules have previously been found to be active against bacteria as membrane disruptors by interacting with the negative constituents of the surface of cancer cells, analogously inducing depolarization and permeabilization, provoking lethal damage to the cytoplasmic membrane, and cause loss of cytoplasmic content and consequently, cell death. Here, aiming to develop new curative options for counteracting NB cells, pyrazole-loaded cationic nanoparticles (NPs) (BBB4-G4K and CB1H-P7 NPs), recently reported as antibacterial agents, were assayed against IMR 32 and SHSY 5Y NB cell lines. Particularly, while BBB4-G4K NPs demonstrated low cytotoxicity against both NB cell lines, CB1H-P7 NPs were remarkably cytotoxic against both IMR 32 and SHSY 5Y cells (IC50 = 0.43–0.54 µM), causing both early-stage (66–85%) and late-stage apoptosis (52–65%). Interestingly, in the nano-formulation of CB1H using P7 NPs, the anticancer effects of CB1H and P7 were increased by 54–57 and 2.5–4-times, respectively against IMR 32 cells, and by 53–61 and 1.3–2 times against SHSY 5Y cells. Additionally, based on the IC50 values, CB1H-P7 was also 1-12-fold more potent than fenretinide, an experimental retinoid derivative in a phase III clinical trial, with remarkable antineoplastic and chemopreventive properties. Collectively, due to these results and their good selectivity for cancer cells (selectivity indices = 2.8–3.3), CB1H-P7 NPs represent an excellent template material for developing new treatment options against NB

    Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma (NB) is an extra-cranial solid tumour of childhood. In spite of the good clinical response to first-line therapy, complete eradication of NB cells is rarely achieved. Thus, new therapeutic strategies are needed to eradicate surviving NB cells and prevent relapse. Sodium ascorbate has been recently reported to induce apoptosis of B16 melanoma cells through down-regulation of the transferrin receptor, CD71. Since NB and melanoma share the same embryologic neuroectodermal origin, we used different human NB cell lines to assess whether the same findings occurred.</p> <p>Results</p> <p>We could observe dose- and time-dependent induction of apoptosis in all NB cell lines. Sodium ascorbate decreased the expression of CD71 and caused cell death within 24 h. An increase in the global and specific caspase activity took place, as well as an early loss of the mitochondrial transmembrane potential. Moreover, intracellular iron was significantly decreased after exposure to sodium ascorbate. Apoptotic markers were reverted when the cells were pretreated with the iron donor ferric ammonium citrate (FAC), further confirming that iron depletion is responsible for the ascorbate-induced cell death in NB cells.</p> <p>Conclusion</p> <p>Sodium ascorbate is highly toxic to neuroblastoma cell lines and the specific mechanism of vitamin C-induced apoptosis is due to a perturbation of intracellular iron levels ensuing TfR-downregulation.</p

    Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid

    Get PDF
    Ellagic acid, a polyphenolic compound present in fruit and berries, has recently been the object of extensive research for its antioxidant activity, which might be useful for the prevention and treatment of cancer, cardiovascular pathologies, and neurodegenerative disorders. Its protective role justifies numerous attempts to include it in functional food preparations and in dietary supplements, and not only to limit the unpleasant collateral effects of chemotherapy. However, ellagic acid use as a chemopreventive agent has been debated because of its poor bioavailability associated with low solubility, limited permeability, first pass effect, and interindividual variability in gut microbial transformations. To overcome these drawbacks, various strategies for oral administration including solid dispersions, micro and nanoparticles, inclusion complexes, self-emulsifying systems, and polymorphs were proposed. Here, we listed an updated description of pursued micro and nanotechnological approaches focusing on the fabrication processes and the features of the obtained products, as well as on the positive results yielded by in vitro and in vivo studies in comparison to the raw material. The micro and nanosized formulations here described might be exploited for pharmaceutical delivery of this active, as well as for the production of nutritional supplements or for the enrichment of novel foods

    Mini-Tablets: A Valid Strategy to Combine Efficacy and Safety in Pediatrics

    Get PDF
    open6In the treatment of pediatric diseases, mass-produced dosage forms are often not suitable for children. Commercially available medicines are commonly manipulated and mixed with food by caregivers at home, or extemporaneous medications are routinely compounded in the hospital pharmacies to treat hospitalized children. Despite considerable efforts by regulatory agencies, the pediatric population is still exposed to questionable and potentially harmful practices. When designing medicines for children, the ability to fine-tune the dosage while ensuring the safety of the ingredients is of paramount importance. For these purposes solid formulations may represent a valid alternative to liquid formulations for their simpler formula and more stability, and, to overcome the problem of swelling ability, mini-tablets could be a practicable option. This review deals with the different approaches that may be applied to develop mini-tablets intended for pediatrics with a focus on the safety of excipients. Alongside the conventional method of compression, 3D printing appeared particularly appealing, as it allows to reduce the number of ingredients and to avoid both the mixing of powders and intermediate steps such as granulation. Therefore, this technique could be well adaptable to the daily galenic preparations of a hospital pharmacy, thus leading to a reduction of the common practice of off-label preparations.openZuccari, Guendalina; Alfei, Silvana; Marimpietri, Danilo; Iurilli, Valentina; Barabino, Paola; Marchitto, LeonardoZuccari, Guendalina; Alfei, Silvana; Marimpietri, Danilo; Iurilli, Valentina; Barabino, Paola; Marchitto, Leonard

    Preparation and Characterization of Amorphous Solid Dispersions for the Solubilization of Fenretinide

    Get PDF
    Fenretinide (4-HPR), a retinoid derivative, has shown high antitumor activity, a low toxicological profile, and no induction of resistance. Despite these favorable features, the variability in oral absorption due to its low solubility combined with the high hepatic first pass effect strongly reduce clinical outcomes. To overcome the solubility and dissolution challenges of poorly water-soluble 4-HPR, we prepared a solid dispersion of the drug (4-HPR-P5) using a hydrophilic copolymer (P5) previously synthesized by our team as the solubilizing agent. The molecularly dispersed drug was obtained by antisolvent co-precipitation, an easy and up-scalable technique. A higher drug apparent solubility (1134-fold increase) and a markedly faster dissolution were obtained. In water, the colloidal dispersion showed a mean hydrodynamic diameter of 249 nm and positive zeta potential (+41.3 mV), confirming the suitability of the formulation for intravenous administration. The solid nanoparticles were also characterized by a high drug payload (37%), as was also evidenced by a chemometric-assisted Fourier transform infrared spectroscopy (FTIR) investigation. The 4-HPR-P5 exhibited antiproliferative activity, with IC50 values of 1.25 and 1.93 µM on IMR-32 and SH-SY5Y neuroblastoma cells, respectively. Our data confirmed that the 4-HPR-P5 formulation developed herein was able to increase drug apparent aqueous solubility and provide an extended release over time, thus suggesting that it represents an efficient approach to improve 4-HPR bioavailability

    Poly(Vinylalcohol-Co-Vinyloleate) for the Preparation of Micelles Enhancing Retinyl Palmitate Transcutaneous Permeation

    Get PDF
    The amphiphilic properties of poly(vinylalcohol) substituted with oleic acid was evaluated to assess the possibility to prepare polymeric micelles in an aqueous phase containing a hydrophobic core able to host lipophilic drugs such as retinyl palmitate and thereby enhance its transcutaneous absorption in the stratum corneum. The effect of the increased drug absorption suggests the possibility of interaction between the substituted polymer and the components present in the intercorneocyte spaces. Correlations between the drug concentration in the preparative mixture, micelle size, and drug permeation were evaluated to establish the best functional properties of the micellar systems enhancing retinyl palmitate absorption. Transcutaneous absorption increased with decreasing micelle size, and micelle size decreased on decreasing the drug concentration in the preparative mixture

    Non-PAMAM amino acids-modified dendrimers nanoparticles for enhancing water-solubility of insoluble bioactive molecules: our state of the art

    Get PDF
    Non-PAMAM amino acids-modified dendrimers nanoparticles for enhancing water-solubility of insoluble bioactive molecules: our state of the art Silvana Alfei,* Andrea Spallarossa, Silvia Catena, Federica Turrini, Guendalina Zuccari, Anna Pittaluga, Raffaella Boggia Dipartimento di Farmacia, Universit\ue0 di Genova, Viale Cembrano 4, I-16148 Genova, Italy E-mail: [email protected] ABSTRACT Water-solubility is essential for GIT absorbability or parenteral administration of drugs, therefore it is a key parameter to achieve the systemic drug concentration necessary for an effective therapeutic activity. Unfortunately, low aqueous solubility is the major problem with bioactive chemical entities (BCEs), in fact, more than 40% BCEs developed in pharmaceutical industry are practically water-insoluble. As a consequence, great are the research efforts focused on the development of new techniques aiming at enhancing it. Toxic excipients and harmful solubilizing agents were also extensively used for solubilizing and delivering non water-soluble drugs, despite the resulting unpleasant side effects complained of by patients. Nowadays, safer strategies, such as drugs physicochemical modifications or particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant and complexation are being exploited. As far as what regards dispersion/complexation techniques, nanoparticles, including dendrimers, are intensely utilized for this purpose, thus in parallel achieving drugs protection from early degradation, more efficient target delivery into cells and tissues and lower systemic toxicity. Synthetic thiocarbamate (O-TC 1) (Fig. 1) is a non-nucleoside HIV-1 reverse transcriptase inhibitor [1] while Ellagic Acid (EA 2) (Fig. 2) is a polyphenol present in some fruits, nuts and seeds endowed with strong antioxidant, anti-inflammatory and other several healthy properties. Unfortunately, both of them are practically insoluble (Table 1), non orally bioavailable, non parenteral administrable, then non usable for therapeutic purposes in their free forms. Fig. 1: Structure of O-TC 1 Fig. 2: Structure of EA 2 Fig. 3: Examples of hydrophilic (left) and amphiphilic (right) dendrimers structure During the last year, these problems have been addressed and successfully resolved by us, and in this communication, the reached promising outcomes have been summarized and the current state of the art provided. Afar from commercially high cytotoxic PAMAM, five non cells-damaging amino acid-modified hydrophilic (3, 4) [2] and amphiphilic (5-7) [3] dendrimers (Fig. 3) have been synthetized and then used as polymer nano-containers to improve 1 and 2 water-solubility. Five (8-12) [4] and two (13, 14) [5] structurally different drugs-loaded nanodispersions (DPXs) were obtained respectively. The structures were confirmed by FT-IR and NMR analysis and all the samples have resulted in being endowed with very good Drug Loading (DL %). Compound 1, totally insoluble except for in highly diluted DMSO when free, once entrapped in dendrimers, shown to be well soluble both in water and in ethanol. In the case of 2, water-solubility was increased even up to 1000 times compared to the free form. For the prerogatives demonstrated in the performed routine analyses, the prepared DPXs could be considered eligible for biomedical and therapeutic applications thus allowing to exploit 1 and 2 pharmacological properties. REFERENCES: 1. A. Spallarossa et al., Eur. J. Med. Chem., 44, 2190 (2009). 2. S. Alfei &amp; S. Catena, Polym. Advan. Technol., 29, 2735 (2018). 3. S. Alfei &amp; S. Catena, Polym. Int., 67, 1572 (2018). 3. S. Alfei et al., Eur. J. Pharm. Sci., 124, 153 (2018). 4. S. Alfei et al., New J. Chem., 2019, DOI: 10.1039/c8nj05657a

    Characterization data of water-soluble hydrophilic and amphiphilic dendrimers prodrugs for delivering bioactive chemical entities otherwise non soluble.

    Get PDF
    More than 40% of bioactive chemical entities (BCEs) developed in pharmaceutical industry are almost water-insoluble, poorly orally bioavailable and/or not via parenteral administrable, and this strongly limits their clinical applications. Drug Delivery (DD) is an engineered technology dealing with the development of delivery systems (DDSs) able to solubilize, transport, target release and maintain therapeutic drugs concentration where needed for long periods. DD frequently makes use of nanosized carriers, often positive charged, including dendrimer such as commercially available and strongly cationic PAMAM and PEI. Nowadays, uncharged dendrimer scaffolds modified with amino acids-modified in their cationic form, are preferred because a more controlled number of nitrogen atoms causes less damage to cells. Then, two hydrophilic (1, 2) [1] (Fig. 1) and three amphiphilic (3-5) [2] (Fig. 2) water-soluble dendrimers were prepared and completely characterized. Once established through proper routine investigations, that these materials could work well as DDSs, they have been used to physically entrap two completely insoluble BCEs i.e. the thiocarbamate (O-TC) 6 [3] and Ellagic Acid (EA) 7 (Fig. 3) with the aim at improving their solubility and in parallel at protecting them from early degradation, at promoting their fast cellular up-take and thus reducing eventual systemic toxicity. Without resorting to toxic excipients and harmful solubilizing agents often used despite the resulting unpleasant side effects, five structurally different nanodispersions (DPXs) loaded with 6 [4] and two with 7 [5] were achieved and completely characterized to confirm their structure and to evaluate their potentiality in biomedical applications
    • …
    corecore