519 research outputs found

    Crystallographic and Seismic Anisotropies of Calcite at Different Depths : a Study Using Quantitative Texture Analysis by Neutron Diffraction

    Get PDF
    Eight samples of limestones and marbles were studied by neutron diffraction to collect quantitative texture (i.e., crystallographic preferred orientations or CPO) of calcite deforming at different depths in the crust. We studied the different Texture patterns developed in shear zones at different depth and their influence on seismic anisotropies. Samples were collected in the French and Italian Alps, Apennines, and Paleozoic Sardinian basement. They are characterized by isotropic to highly anisotropic (e.g., mylonite shear zone) fabrics. Mylonite limestones occur as shear zone horizons within the Cenozoic Southern Domain in Alpine thrust-and-fold belts (Italy), the Brian\ue7onnais domain of the Western Alps (Italy-France border), the Sardinian Paleozoic back-thrusts, or in the Austroalpine intermediate units. The analyzed marbles were collected in the Carrara Marble, in the Austroalpine Units in the Central (Mortirolo) and Western Alps (Valpelline). The temperature and depth of development of fabrics vary from <100\u25e6C, to 800\u25e6C and depth from <10 km to about 30 km, corresponding from upper to lower crust conditions. Quantitative Texture Analysis shows different types of patterns for calcite: random to strongly textured. Textured types may be further separated in orthorhombic and monoclinic (Types A and B), based on the angle defined with the mesoscopic fabrics. Seismic anisotropies were calculated by homogenizing the single-crystal elastic tensor, using the Orientation Distribution Function calculated by Quantitative Texture Analysis. The resulting P-and S-wave anisotropies show a wide variability due to the textural types, temperature and pressure conditions, and dip of the shear planes

    Geoheritage and sport climbing activities : using the Montestrutto cliff (Austroalpine domain, Western Alps) as an example of scientific and educational representativeness

    Get PDF
    Numerous sites of geological and geomorphological interest (i.e., geosites or geomorphosites) have been recently individuated around the Alps, testifying to the great geodiversity that chara - cterises this mountain range. Some rock cliffs that have been locally equipped as sport climbing sites may also be considered as sites of geological and geomorphological interest: The combination of features such as educational exemplarity and geohistorical importance increase the scientific value of these sites. Progression along climbing routes is intimately connected with the geological and geomorphological features of the cliff; thus, it may be possible to interest typical climbers in the area of the Earth Sciences. A research study was conducted at the Montestrutto climbing wall (Western Alps, Italy), which is located in the Eclogitic Mica - schist Complex of the Austroalpine Domain, with the following objectives: i) to reconstruct the deformation stages at local scales along the sport climbing wall and in the surroundings; ii) to analyse how geological elements are related to the physical elements needed for vertical progression to strengthen the link among geology, morphology and the grade of the routes, and finally iii) to use previous results to evaluate the potential of Montestrutto as a geosite. The detailed study consisted of the quantitative analysis of five routes of varying degrees of difficulty, which produced an interesting relationship among the level of difficulty of the routes and the geological and geomorphological features of the sport climbing wall. The Montestrutto cliff is considered to be a valuable geosite because of the scientific importance (e.g., representativeness, educational exemplarity and geohistorical importance) associated with its high cultural and socio-economic value and high potential for use. Sport climbing in sites such as Montestrutto, which are both scientifically significant and accessible, also in terms of the level of climbing difficulty, could be considered as a possible vehicle for stimulating public interest in the Earth Sciences

    Environmental impact of the typical heavy pig production in Italy

    Get PDF
    The Italian pig sector is mainly focused on the production of heavy pigs used for the traditional dry-cured hams. At slaughter a minimum of 160 kg and 9 months age are required to comply with the production specifications of the ham consortia. Advancing livestock age and increasing fat deposition negatively affect feed conversion ratio, which is one of the main determinants of meat production environmental impact. The aim of the study was to provide a first evaluation of the environmental impact potentials of heavy pig production in Italy through a Life Cycle Assessment approach. Additional objectives were to identify the main hot spots and the most important data gaps in the analysis. A cradle to farm gate Life Cycle Assessment was performed in 6 intensive pig farms located in Northern Italy. Key parameters concerning on-farm activities, inputs and outputs were collected through personal interviews with farmers. The functional unit was 1 kg live weight. Direct land use change was considered in the emissions of imported soybean. The average pig slaughter live weight was 168.7 \ub1 33.3 kg. Environmental impacts per kg live weight were generally higher than those generated in the production of pigs slaughtered at lower weight. The global warming potential was on average 4.25 \ub1 1.03 kg CO2 eq/kg live weight. Feed chain (crop production at farm and purchased feed) was the major source of impact for all the categories and the most important hotspot of heavy pig production. Farm size and reproductive efficiency appeared important factors in the environmental burden of heavy pig production: the largest and most efficient farm (as live weight produced per sow) had impact potentials per kg live weight much lower than those generated in the less efficient farm and similar to the ones reported on pigs slaughtered at a lower weight. The wide range of impact values within farms reveals opportunities for environmental improvements in the production of the traditional heavy pig. There is a need for further data and models on methane enteric emissions and nitrogen excretions above 100 kg of live weight

    Effect of raw sunflower seeds on goat milk production in different farming systems

    Get PDF
    Aim of this study was to test the effect of raw sunflower seeds on goat milk production. Two farms with different farming systems (intensive and semi-intensive) participated to the trial. In each farm about 60 mid-lactation Alpine goats were divided in two groups during spring-summer time. A diet containing 5-6% of sunflower seeds on DM basis was compared with a control diet in a change-over design. In the semi-intensive farm milk yield of goats fed sunflower was 3.46 kg/d compared to 3.58 kg/d of goats fed control diet, whereas in the intensive farm milk yield was 4.60 kg/d vs 4.66 kg/d. Fat content increased significantly from 2.99% to 3.23% only in the intensive farm. The research in the intensive farm investigated also milk and cheese fatty acids composition. Medium and short chain fatty acids (C8-C16) content dropped and long chain fatty acids content increased when sunflower was added. In conclusion raw sunflower seed inclusion in dairy goat diets can be useful, in order to limit the inversion of fat and protein percentages in milk

    Effect of season and cow cleanliness on teat apex score and milk somatic cell count

    Get PDF
    Teat end tissue could change after repeated milkings, resulting in the development of a callous ring around the teat orifice. Factors affecting teat hyperkeratosis include: teat end shape, production level, stage of lactation, lactation number, milking management (especially slow milking and over-milking). Also harsh weather conditions or sudden weather changes can affect the level of teat hyperkeratosis. Somatic cells count in milk is an indicator of udder safety and is influenced by stage and number of lactation, milking procedure, hygiene condition of cubicles and udder, seasonal variations. The aim of the study was to investigate the effects of season and cow cleanliness on teat end condition and somatic cell count (SCC). A sample of 16 dairy farms (80 cows on average) were visited during winter, summer and intermediate seasons (autumn or spring) at evening milking. Hygiene score (Schreiner and Ruegg, 2003) and teat score (Mein et al., 2001) were assessed for each milking cows. Individual SCC and milk quality were obtained from AIA database. Records were Linear Score (LS) per cell count, average Udder hygiene Score (US) and average Teat Score (TS). Two classes of observations were defined on US basis: 642 or >2 score. All data (2161 observations) were analyzed using analysis of variance (proc GLM, SAS). LS showed very low values but with high variability (2.9\ub11.7 on average); TS was very good (1.8\ub10.62). Season had a significant effect (P < 0.001) on milk quality (fat and protein) with higher values during winter in comparison with other season; unexpected no effect was obtained on LS. Season also affected TS with higher value during intermediate seasons. US was significantly higher (P<0.05) during winter in comparison with other seasons. TS were significantly lower (P<0.02) in the first class (based on US) compared to the second one. The study confirmed the great effect of season on milk quality and teat conditions and showed that udder cleanliness had a positive consequence on teat apex condition

    Strain partitioning in host rock controls LREE release from allanite-(Ce) in subduction zones

    Get PDF
    Combined microstructural, mineral chemical, X-ray maps, and X-ray single-crystal diffraction analyses are used to reveal the rheological behaviour of individual grains of magmatic allanite relicts hosted in variably deformed metagranitoids at Lago della Vecchia (inner part of the Sesia-Lanzo Zone, Western Alps, Europe), which experienced high pressure and low temperature metamorphism during the Alpine subduction. X-ray single crystal diffraction shows that none of the allanite crystals, irrespective of the strain state of the host rock, record any evidence of plastic deformation (i.e., intracrystalline deformation), as indicated by the shape of the Bragg diffraction spots, the atomic site positions, and their displacement around the centre of gravity. On the contrary, strong plastic deformation affected matrix minerals, such as quartz, white mica, and feldspar of the hosting rocks, during the development of the Alpine eclogitic- and blueschist-facies metamorphism. Despite the strain-free atomic structures of allanite, different patterns of chemical zoning, as a function of strain accumulated in the rock matrix, are observed. Since allanite occurs in magmatic and metamorphic rocks and it is stable at high pressure and low temperature conditions, we infer that allanite could behave as one of the main carriers of light-rare-earth-elements into the mantle wedge during subduction of continental crust. In particular, the release of light-rare-earth-elements from allanite, under high pressure conditions in subduction zones, is facilitated by high strain accumulated in the host rock

    Structural analysis of a subduction-related contact in southern Sesia-Lanzo Zone (Austroalpine Domain, Italian Western Alps)

    Get PDF
    A new foliation trajectory map at 1:10000 scale, represented here with an interpretative structural map, is derived from an original field analysis at 1:5000 scale in the southern Sesia-Lanzo Zone (SLZ). It shows the relative chronology of overprinting foliations, characterised by the mineral assemblages that mark superposed fabrics in each rock type. This map and the associated cross-sections, which synthesise the 3D structural outline of the tectonic contact between the Eclogitic Micaschists Complex (EMC), the Rocca Canavese Thrust Sheets and the Lanzo Ultramafic Complex, allow the correlation of the structural and metamorphic imprints that developed in these crustal and mantle complexes during Alpine subduction. Furthermore, the map and cross-sections allow the immediate perception of the metamorphic environments in which the structural imprints developed in each complex successively under eclogite, blueschist and greenschist facies conditions. The represented structural and metamorphic evolution of the southern end of the SLZ (internal Western Alps) has been inferred based on multiscale structural analysis. The dominant fabrics at the regional scale are two superposed mylonitic foliations that developed under blueschist and greenschist facies conditions, respectively. Metamorphic assemblages underlying the successive fabrics in the different metamorphic complexes allow us to identify contrasting metamorphic evolutions indicating that the tectonic contacts between the EMC, the Rocca Canavese Thrust Sheets and the Lanzo Ultramafic Complex developed under blueschist facies conditions and were successively reactivated during the greenschist facies retrogression

    Tectono-metamorphic map of the Mont Morion Permian metaintrusives (Mont Morion - Mont Collon - Matterhorn Complex, Dent Blanche Unit), Valpelline - Western Italian Alps

    Get PDF
    The presented map displays the structural and metamorphic evolution of lithotypes from pre-Permian to present. We distinguish pre-Permian rocks (e.g., amphibolite, biotite-bearing gneiss and acid granulite) preserved as roof pendants (i.e., xenoliths) within Permian intrusives. Permian intrusives and hosted xenoliths are then re-equilibrated during Alpine evolution, producing coronitic to mylonitic metaintrus-ives, due to meter to kilometer-scale fabric gradients, and associated white mica-, glaucophane-bearing gneiss. The map also shows the traces of the superimposed foliations and the fold axial planes. The traces are distinguished on the basis of their relative chronology and mineralogical support. This information, reported on a single map, allows us to reconstruct the successive stages of this fragment belonging to the African plate continental crust, from the pre-Alpine extension, recorded by granulite- to amphibolite-facies xenolits, to the Permian intrusive phase (e.g., Mont Morion, Mont Collon and Matter-horn intrusives) lasting with the Alpine subduction-collision related evolution. The Mont Morion, part of the Mont Morion-Mont Collon-Matterhorn Complex of the Dent Blanche unit, may be interpreted as a multi-stadial Alpine km-scale shear zone, where Permian intrusive rocks are transformed into white mica chlorite-bearing or glaucophane-bearing gneisses along high-strain horizons (100 m-thick), while within low-strain cores (100- to 1000 m-thick), meta-intrusives preserve igneous features and xenoliths of am-phibolites, acid granulites and biotite-bearing gneisses. In this paper, an outcrop tectono-metamorphic map (1:10,000 scale) is presented, based upon fieldwork at 1:5,000 together with an interpretative map (1:15,000 scale), in which three dimensional relationships are described, and micro- to mesoscopic fabric types are shown, corresponding to finite strain states recorded by rocks

    How can farming intensification affect the environmental impact of milk production? 

    Get PDF
    The intensification process of the livestock sector has been characterized in recent decades by increasing output of product per hectare, increasing stocking rate, including more concentrated feed in the diet, and improving the genetic merit of the breeds. In dairy farming, the effects of intensification on the environmental impact of milk production are not completely clarified. The aim of the current study was to assess the environmental impacts of dairy production by a life cycle approach and to identify relations between farming intensity and environmental performances expressed on milk and land units. A group of 28 dairy farms located in northern Italy was involved in the study; data collected during personal interviews of farmers were analyzed to estimate emissions (global warming potential, acidification, and eutrophication potentials) and nonrenewable source consumption (energy and land use). The environmental impacts of milk production obtained from the life cycle assessment were similar to those of other recent studies and showed high variability among the farms. From a cluster analysis, 3 groups of farms were identified, characterized by different levels of production intensity. Clusters of farms showed similar environmental performances on product basis, despite important differences in terms of intensification level, management, and structural characteristics. Our study pointed out that, from a product perspective, the most environmentally friendly way to produce milk is not clearly identifiable. However, the principal component analysis showed that some characteristics related to farming intensification, such as milk production per cow, dairy efficiency, and stocking density, were negatively related to the impacts per kilogram of product, suggesting a role of these factors in the mitigation strategy of environmental burden of milk production on a global scale. Considering the environmental burden on a local perspective, the impacts per hectare were positively associated with the intensification level

    Integrating X-ray computed tomography with chemical imaging to quantify mineral re-crystallization from granulite to eclogite metamorphism in the Western Italian Alps (Sesia-Lanzo Zone)

    Get PDF
    Metamorphic transformations and fabric evolution are the consequence of thermo-dynamic processes, lasting from thousands to millions of years. Relative mineral percentages, their grain size distribution, grain orientation, and grain boundary geometries are first-order parameters for dynamic modeling of metamorphic processes. To quantify these parameters, we propose a multidisciplinary approach integrating X-ray computed microtomography (\u3bc-CT) with X-ray chemical mapping obtained from an Electron MicroProbe Analyzer (EMPA). We used a metapelitic granulite sample collected from the Alpine HP-LT metamorphic rocks of the Mt. Mucrone (Eclogitic Micaschists Complex, Sesia-Lanzo Zone, Western Alps, Italy). The heterogeneous Alpine deformation and metamorphism allowed the preservation of pre-alpine structural and mineralogical features developed under granulite-facies conditions. The inferred granulitic mineral association is Grt + Bt + Sil + Pl + Qtz \ub1 Ilm \ub1 Kfs \ub1 Wm. The subsequent pervasive static eclogite-facies re-equilibration occurred during the alpine evolution. The inferred alpine mineral association is Wm + Omp \ub1 Ky + Qtz + Grt though local differences may occur, strongly controlled by chemistry of microdomains. X-ray \u3bc-CT data extracted from centimeter-sized samples have been analyzed to quantify the volumetric percentage and shape preferred orientation (SPO) for each mineral phase. By combining tomographic phase separation with chemical variation and microstructures (i.e., different grain-size classes for the same phase and morphology of different pre-alpine microdomains) the pre-alpine mineralogical phases from the alpine overprint have been distinguished and quantified. Moreover, the sample preserves 100% of the pre-alpine granulite fabric, which surprisingly corresponds to less than 22% of the corresponding pre-alpine metamorphic assemblages, while the alpine eclogitic static assemblage corresponds to 78% though no new fabric is developed. This contribution demonstrates that the combined use of EMPA X-ray chemical mapping with the X-ray \u3bc-CT shape analysis permits a dynamic approach to constrain the chemistry of the mineral phases linked to the development of metamorphic-related static and dynamic fabrics
    • …
    corecore