58 research outputs found

    Leaf Species-Dependent Fungicide Effects on the Function and Abundance of Associated Microbial Communities

    Get PDF
    Microbially-mediated leaf litter decomposition is a critical ecosystem function in running waters within forested areas, which can be affected by fungicides. However, fungicide effects on leaf litter decomposition have been investigated almost exclusively with black alder leaves, a leaf species with traits favourable to consumers (i.e., low recalcitrance and high nutrient content). At the same time, little is known about fungicide effects on microbial colonisation and decomposition of other leaf species with less favourable traits. In this 21 day lasting study, we explore the effects of increasing fungicide sum concentrations (0-3000 mu g/L) on microbial colonisation and decomposition of three leaf species (black alder, Norway maple and European beech) differing in terms of recalcitrance and nutrient content. Leaf litter decomposition rate, leaf-associated fungal biomass and bacterial density were quantified to observe potential effects at the functional level. Beech, as the species with the least favourable leaf traits, showed a substantially lower decomposition rate (50%) in absence of fungicides than alder and maple. In the presence of high fungicide concentrations (300-3000 mu g/L), beech showed a concentration-related decrease not only in microbial leaf litter decomposition but also fungal biomass. This suggests that favourable traits of leaf litter (as for alder and maple) enable leaf-associated microorganisms to acquire leaf-bound energy more easily to withstand potential effects induced by fungicide exposure. Our results indicate the need to deepen our understanding on how leaf species' traits interact with the impact of chemical stressors on the leaf decomposition activity of microbial communities

    Spatial and dietary sources of elevated mercury exposure in white-tailed eagle nestlings in an Arctic freshwater environment

    Get PDF
    Human-induced mercury (Hg) contamination is of global concern and its effects on wildlife remain of high concern, especially in environmental hotspots such as inland aquatic ecosystems. Mercury biomagnifies through the food web resulting in high exposure in apex predators, such as the white-tailed eagle (Haliaeetus albicilla), making them excellent sentinel species for environmental Hg contamination. An expanding population of white-tailed eagles is inhabiting a sparsely populated inland area in Lapland, northern Finland, mainly around two large reservoirs flooded 50 years ago. As previous preliminary work revealed elevated Hg levels in this population, we measured Hg exposure along with dietary proxies (delta C-13 and delta N-15) in body feathers collected from white-tailed eagle nestlings in this area between 2007 and 2018. Mercury concentrations were investigated in relation to territory characteristics, proximity to the reservoirs and dietary ecology as potential driving factors of Hg contamination. Mercury concentrations in the nestlings (4.97-31.02 mu g g(-1) dw) were elevated, compared to earlier reported values in nestlings from the Finnish Baltic coast, and exceeded normal background levels (40.00 mu g g(-1)). The main drivers of Hg contamination were trophic position (proxied by delta N-15), the dietary proportion of the predatory fish pike (Esox Lucius), and the vicinity to the Porttipahta reservoir. We also identified a potential evolutionary trap, as increased intake of the preferred prey, pike, increases exposure. All in all, we present results for poorly understood freshwater lake environments and show that more efforts should be dedicated to further unravel potentially complex pathways of Hg exposure to wildlife.Peer reviewe

    Fungal-fungal and fungal-bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity

    Get PDF
    Fungi produce a variety of extracellular enzymes, making recalcitrant substrates bioavailable. Thus, fungi are central for the decomposition of dead organic matter such as leaf litter. Despite their ecological importance, our understanding of relationships between fungal species diversity and ecosystem functioning is limited, especially with regard to aquatic habitats. Moreover, fungal interactions with other groups of microorganisms such as bacteria are rarely investigated. This lack of information may be attributed to methodological limitations in tracking the biomass of individual fungal species in communities, impeding a detailed assessment of deviations from the overall performance expected from the sum of individual species' performances, so-called net diversity effects (NDEs). We used fungal species-specific biomolecular tools to target fungal-fungal and fungal-bacterial interactions on submerged leaves using four cosmopolitan aquatic fungal species and a stream microbial community dominated by bacteria. In microcosms, we experimentally manipulated fungal diversity and bacterial absence/presence and assessed functional performances and fungal community composition after 14 d of incubation. Fungal community data were used to evaluate NDEs on leaf colonization. The individual fungal species were functionally distinct and fungal cultures were on average more efficient than the bacterial culture. In absence of bacteria, NDEs correlated with growth rate (negatively) and genetic divergence (positively), but were predominantly negative, suggesting that higher fungal diversity led to a lower colonization success (niche overlap). In both absence and presence of bacteria, the overall functional performances of the communities were largely defined by their composition (i.e., no interactions at the functional level). In the presence of bacteria, NDEs correlated with genetic divergence (positively) and were largely positive, suggesting higher fungal diversity stimulated colonization (niche complementarity). This stimulation may be driven by a bacteria-induced inhibition of fungal growth, alleviating competition among fungi. Resulting feedback loops eventually promote fungal coexistence and synergistic interactions. Nonetheless, overall functional performances are reduced compared to bacteria-free cultures. These findings highlight the necessity to conduct future studies, investigating biodiversity-ecosystem functioning relationships using artificial systems, without exclusion of key organisms naturally co-occurring in the compartment of interest. Otherwise, study outcomes might not reflect true ecological relationships and ultimately misguide conservation strategies

    As above, so below? Effects of fungicides on microbial organic matter decomposition are stronger in the hyporheic than in the benthic zone

    Get PDF
    Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1-2 vs. 2-4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition

    Environmentally relevant fungicide levels modify fungal community composition and interactions but not functioning

    Get PDF
    Aquatic hyphomycetes (AHs), a group of saprotrophic fungi adapted to submerged leaf litter, play key functional roles in stream ecosystems as decomposers and food source for higher trophic levels. Fungicides, controlling fungal pathogens, target evolutionary conserved molecular processes in fungi and contaminate streams via their use in agricultural and urban landscapes. Thus fungicides pose a risk to AHs and the functions they provide. To investigate the impacts of fungicide exposure on the composition and functioning of AH communities, we exposed four AH species in monocultures and mixed cultures to increasing fungicide concentrations (0, 5, 50, 500, and 2500 mg/L). We assessed the biomass of each species via quantitative real-time PCR. Moreover, leaf decomposition was investigated. In monocultures, none of the species was affected at environmentally relevant fungicide levels (5 and 50 mg/L). The two most tolerant species were able to colonize and decompose leaves even at very high fungicide levels (>= 500 mg/L), although less efficiently. In mixed cultures, changes in leaf decomposition reflected the response pattern of the species most tolerant in monocultures. Accordingly, the decomposition process may be safeguarded by tolerant species in combination with functional redundancy. In all fungicide treatments, however, sensitive species were displaced and interactions between fungi changed from complementarity to competition. As AH community composition determines leaves' nutritional quality for consumers, the data suggest that fungicide exposures rather induce bottom-up effects in food webs than impairments in leaf decomposition. (C) 2021 The Author(s). Published by Elsevier Ltd

    Spatial and dietary sources of elevated mercury exposure in white-tailed eagle nestlings in an Arctic freshwater environment

    Get PDF
    Human-induced mercury (Hg) contamination is of global concern and its effects on wildlife remain of high concern, especially in environmental hotspots such as inland aquatic ecosystems. Mercury biomagnifies through the food web resulting in high exposure in apex predators, such as the white-tailed eagle (Haliaeetus albicilla), making them excellent sentinel species for environmental Hg contamination. An expanding population of white-tailed eagles is inhabiting a sparsely populated inland area in Lapland, northern Finland, mainly around two large reservoirs flooded 50 years ago. As previous preliminary work revealed elevated Hg levels in this population, we measured Hg exposure along with dietary proxies (δ13C and δ15N) in body feathers collected from white-tailed eagle nestlings in this area between 2007 and 2018. Mercury concentrations were investigated in relation to territory characteristics, proximity to the reservoirs and dietary ecology as potential driving factors of Hg contamination. Mercury concentrations in the nestlings (4.97–31.02 μg g−1 dw) were elevated, compared to earlier reported values in nestlings from the Finnish Baltic coast, and exceeded normal background levels (≤5.00 μg g−1) while remaining below the tentative threshold of elevated risk for Hg exposure mediated health effect (>40.00 μg g−1). The main drivers of Hg contamination were trophic position (proxied by δ15N), the dietary proportion of the predatory fish pike (Esox lucius), and the vicinity to the Porttipahta reservoir. We also identified a potential evolutionary trap, as increased intake of the preferred prey, pike, increases exposure. All in all, we present results for poorly understood freshwater lake environments and show that more efforts should be dedicated to further unravel potentially complex pathways of Hg exposure to wildlife.</p

    Subsidy Quality Affects Common Riparian Web-Building Spiders: Consequences of Aquatic Contamination and Food Resource

    Get PDF
    Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin (R)) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. (c) 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC

    Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine

    Get PDF
    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems’ integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50\ua0μS/cm to 11,000\ua0μS/cm) and coalmine-induced (100\ua0μS/cm to 2400\ua0μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000\ua0μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50\ua0μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500\ua0μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny

    Similar recovery time of microbial functions from fungicide stress across biogeographical regions

    Get PDF
    Abstract Determining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time

    Trophic Dynamics of Mercury in the Baltic Archipelago Sea Food Web: The Impact of Ecological and Ecophysiological Traits

    Get PDF
    We investigated trophic dynamics of Hg in the polluted Baltic Archipelago Sea using established trophic magnification (TMFs) and biomagnification factors (BMFs) on a comprehensive set of bird, fish, and invertebrate species. As different ecological and ecophysiological species traits may affect trophic dynamics, we explored the effect of food chain (benthic, pelagic, benthopelagic) and thermoregulatory strategy on trophic total Hg (THg) dynamics, using different approaches to accommodate benthopelagic species and normalize for trophic position (TP). We observed TMFs and most BMFs greater than 1, indicating overall THg biomagnification. We found significantly higher pelagic TMFs (3.58-4.02) compared to benthic ones (2.11-2.34) when the homeotherm bird species were excluded from models, but not when included. This difference between the benthic and pelagic TMFs remained regardless of how the TP of benthopelagic species was modeled, or whether TMFs were normalized for TP or not. TP-corrected BMFs showed a larger range (0.44-508) compared to BMFs representing predator-prey concentration ratios (0.05-82.2). Overall, the present study shows the importance of including and evaluating the effect of ecological and ecophysiological traits when investigating trophic contaminant dynamics
    • …
    corecore