24 research outputs found

    The physical and optical investigations of the tannic acid functionalised Cu-based oxide nanostructures

    Get PDF
    The need for a mild, low-cost, green environment that is able to produce exotic properties of output nanostructures is appealing nowadays. Employing these requirements, the copper (Cu)—based oxide nanostructures have been successfully synthesised via one-pot reaction using biocompatible natural polyphenol, tannic acid (TA) as both the reducing agent and stabiliser at 60, 70 and 80 °C. The structural and optical studies disclosed the efect of TA on the surface morphology, phase purity, elemental composition, optical microstrain and optical intrinsic energy of this mixed Cu2O and CuO nanostructures. The optically based method describes the comparative details of the multi-band gap in the presence of more than one element with overlapping spectra from the frstderivative absorbance curve and the exponential absorbance of Urbach tail energy EU towards the conventional Tauc bandgap. The A demonstrates that the pronounced efect of TA that Cu2O and CuO nanostructures creates much sensitive frst-derivative bandgap output compared to the Tauc bandgap. The results also show that the EU reduced as the temperature reaches 70 °C and then experienced sudden increase at 80 °C. The change in the pattern is parallel to the trend observed in the Williamson– Hall microstrain and is evident from the variations of the mean crystallite size Dm which is also a cause response to the change in temperature or pH. Therefore, the current work has elucidated that the structural and optical correlations on the as-synthesised Cu2O and CuO nanostructures in the presence of TA were the combined reaction of pH change and the ligand complexation reactions. The acquired results suggest a more comprehensive range of studies to further understand the extent relationship between the physical and optical properties of TA functionalised Cu-based oxide nanostructures

    Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets

    Get PDF
    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m(2)/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m(2)/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems

    Novel algorithm for mobile robot path planning in constrained environment

    Get PDF
    This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobile robot path planning problem in a two-dimensional map with the presence of constraints. This approach gives the possibility to find the path for a wheel mobile robot considering some constraints during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating wave of points in all direction towards the goal point with adhering to constraints. In simulation, the proposed method has been tested in several working environments with different degrees of complexity. The results demonstrated that the proposed method is able to generate efficiently an optimal collision-free path. Moreover, the performance of the proposed method was compared with the A-star and laser simulator (LS) algorithms in terms of path length, computational time and path smoothness. The results revealed that the proposed method has shortest path length, less computational time and the best smooth path. As an average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectively and presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In order to verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot (WMR) platform in labs and roads. The experimental work investigates a complete autonomous WMR path planning in the lab and road environments using a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of the analogous-road in lab or real-road environments. The study shows that the proposed method is able to generate shortest path and best smooth trajectory from start to goal points in comparison with laser simulator

    Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets

    Get PDF
    The conventional method of synthesizing carbon-based nanofluids produces harmful products that are highly toxic and hazardous. The present investigation deals with the effects of using eco-friendly, non-corrosive, covalent functionalized Graphene Nanoplatelets with gallic acid (GGNPs) as heat transfer fluid on energetic and exergetic performance of a Liquid flat-plate solar collector (LFPSC). Long-term dispersible stable GGNP nanofluids with base fluid distilled water are prepared with different weight concentrations of 0.025%, 0.05% & 0.1%. For varying concentrations, fluid flow rates of 0.8, 1.2, and 1.5 L/min, heat flux intensities of 600, 800, and 1000 W/m(2), and inlet temperature ranging from 303 to 323 K are considered for the conduction of experiments. Improvement in energy and exergetic efficiency was achieved using GGNP nanofluids. Thermal efficiency surges with increment in flow rate and heat flux intensities, meanwhile it decreases for increment in inlet temperature. The maximum enhancement in LFPSC efficiency is 24.09% for 0.1 wt% GGNPs and flow rate of 1.5 L/min than distilled water. Analysis of exergetic performance revealed that exergy efficiency reduces with a rise in mass flow rate meanwhile enhanced with an increase in nanofluid concentration. Exergy efficiency was maximum for 0.1% GGNP concentration and flow rate of 0.8 L/min. The maximum increase in friction factor values is approximately 1.5, 2.6 and 7.9% for 0.025, 0.05 and 0.1% GGNP nanofluids than distilled water. Relative pumping power slightly increases with the increment of GGNP concentration but is quite close to that of the base fluid. Performance index greater than one is obtained with higher values achieved at an increase in GGNP weight concentration. Economic consideration of GGNP nanofluids in LFPSC showcased a maximum reduction of 26.41% in the size of collector area using 0.1% GGNP nanofluid instead of distilled water. The payback period for LFPSC using GGNPs was 5.615% lesser than that of using water

    Blended morphologies of plasmonic nanofluids for direct absorption applications

    No full text
    Direct absorption solar collectors were introduced to overcome the limitations of conventional surface absorber collectors. The advances in nanotechnology accompanied with phenomenological discoveries at the nanoscale have allowed the appearance of plasmonic nanofluids, which utilize localized surface plasmon resonance phenomenon that multiplies the extinction efficiency of the plasmonic nanoparticle several times at the resonance wavelength. Silver nanoparticles exhibit a high intensity of the localized surface plasmon, which can be fine-tuned within the broadband 350–1200 nm by tailoring their shape, size and aspect ratio. In this paper, we have numerically investigated the effects of silver nanoparticles’ morphology on the localized surface plasmon resonance and on the extinction peaks. Numerical results allow determining the effective morphologies at every band of the solar spectrum. Thus, nanofluids composed of blended Ag nano-morphologies were designed, which can expand the absorbance over the entire solar spectrum. By means of the radiative transfer equation, we found that blended plasmonic nanofluids have the potential to raise the efficiency of the direct solar collector to more than 85% at a very low concentration below 0.001 wt%. Utilization of the blended plasmonic nanofluids are not limited to solar thermal and concentrated solar power applications, but also can be extended into the optical filters in PV/thermal applications

    Colloidal stability measurements of graphene nanoplatelets covalently functionalized with tetrahydrofurfuryl polyethylene glycol in different organic solvents

    No full text
    In this study, a facile, efficient, and cost-effective method was proposed for mass-production of tetrahydrofurfuryl polyethylene glycol-functionalized graphene nanoplatelets (TFPEG-treated GNPs) with improved colloidal stability in water and different organic solvents. In this method, zirconium(IV) oxychloride octahydrate was used as catalyst to covalently functionalize GNPs with TFPEG via direct esterification of carboxylic acid on the GNPs with the hydroxyl chains of TFPEG. Covalent functionalization was verified by Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Further, the morphology of the TFPEG-treated GNPs was determined via a high-resolution transmission electron microscopy. The stability of the treated GNPs in colloidal form was examined by dispersing 0.01 wt% of the solid sample into different organic solvents namely distilled water, methanol, ethanol, ethylene glycol, and 1-hexanol. It was found that the sedimentation rate of TFPEG-treated GNPs in distilled water, methanol, ethanol, ethylene glycol, and 1-hexanol was at 11, 25, 36, 18, and 47%, respectively, recorded after 15 days. Viscosity and thermal conductivity of water-based TFPEG-treated GNP nanofluids were also measured at different concentrations (0.100, 0.075, 0.050, and 0.025 wt%). The results suggest that these nanofluids have great potential for use as working fluids in industrial heat transfer systems

    Evaluation on stability and thermophysical performances of covalently functionalized graphene nanoplatelets with xylitol and citric acid

    No full text
    An economical and environmentally friendly approach has been introduced to synthesize highly stable graphene nanoplatelets (GNPs) dispersions with different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy involved with the introduction of hydroxyl groups through mild oxidation of GNPs which was then grafted with citric acid and xylitol that polymerized together, improving the solubility of GNPs. The functionalization of GNPs was proved by Fourier transform infrared (FTIR), Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using xylitol and citric acid (XC)-treated GNPs as an additive in base fluid to check their thermophysical properties. Great stability for water-, methanol-, ethanol-, 1-hexanol- and ethylene glycol-based XC-treated GNPs dispersions at 0.01 wt% was achieved, representing stable weight concentrations of 89%, 75%, 72%, 64% and 82% after 15 days, respectively. In addition, the XC-treated GNPs show remarkable enhancement in the thermal conductivity up to 34% at 60 °C. Furthermore, water-based XC-treated GNPs dispersions with different concentrations show Newtonian behaviour

    Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances

    No full text
    A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems

    Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents

    No full text
    The employment of nanofluids involving the dispersion of nanomaterials in the base fluid has become a major interest of the researchers due to great potential in enhancing the thermophysical properties and heat transfer coefficients. The stability of nanoparticles in base fluids is a major concern with heat transfer applications. The main purpose of this research was to study the stability of graphene nanoplatelets (GNPs) in the presence of Pluronic P-123 surfactant (P-123) in aqueous media and to compare with other common surfactants such as sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX). Each of the surfactants was mixed with GNPs at different ratios of 1:1, 1:2, 1:3 and 1:4. Then, the best ratio with the most stable sample was selected and compared with other samples. The stability of samples was evaluated by using UV-vis spectrometry, zeta potential and particle size distribution. The viscosity and thermal conductivity of the best sample were also measured at different temperatures. High resolution-transmission Electron Microscopy (HR-TEM) was used to characterize the morphology of GNPs. Interestingly, P-123 as a new surfactant showed the best colloidal stability between our samples. Furthermore, the presence of SDS, CTAB and TX surfactants in the nanofluids caused the formation of excessive foam, while P123-GNPs showed no foam-formation after shaking within the given time. It is worthy to highlight that the rises in thermal conductivity and stability in the presence of P-123 were higher than those of other surfactants. Also, the addition of rheological property (viscosity) was found to be insignificant once loading P-123
    corecore