3 research outputs found

    Subtype-Based Analysis of Cell-in-Cell Structures in Esophageal Squamous Cell Carcinoma

    Get PDF
    Cell-in-cell (CIC) structures are defined as the special structures with one or more cells enclosed inside another one. Increasing data indicated that CIC structures were functional surrogates of complicated cell behaviors and prognosis predictor in heterogeneous cancers. However, the CIC structure profiling and its prognostic value have not been reported in human esophageal squamous cell Carcinoma (ESCC). We conducted the analysis of subtyped CIC-based profiling in ESCC using “epithelium-macrophage-leukocyte” (EML) multiplex staining and examined the prognostic value of CIC structure profiling through Kaplan-Meier plotting and Cox regression model. Totally, five CIC structure subtypes were identified in ESCC tissue and the majority of them was homotypic CIC (hoCIC) with tumor cells inside tumor cells (TiT). By univariate and multivariate analyses, TiT was shown to be an independent prognostic factor for resectable ESCC, and patients with higher density of TiT tended to have longer post-operational survival time. Furthermore, in subpopulation analysis stratified by TNM stage, high TiT density was associated with longer overall survival (OS) in patients of TNM stages III and IV as compared with patients with low TiT density (mean OS: 51 vs 15 months, P = 0.04) and T3 stage (mean OS: 57 vs 17 months, P=0.024). Together, we reported the first CIC structure profiling in ESCC and explored the prognostic value of subtyped CIC structures, which supported the notion that functional pathology with CIC structure profiling is an emerging prognostic factor for human cancers, such as ESCC

    <i>Thinopyrum intermedium</i> TiAP1 interacts with a chitin deacetylase from <i>Blumeria graminis</i> f. sp. <i>tritici</i> and increases the resistance to <i>Bgt</i> in wheat

    No full text
    The biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt) is a crucial factor causing reduction in global wheat production. Wild wheat relatives, for example Thinopyrum intermedium, is one of the wild‐used parents in wheat disease‐resistant breeding. From T. intermedium line, we identified the aspartic protease gene, TiAP1, which is involved in resistance against Bgt. TiAP1 is a secreted protein that accumulates in large amounts at the infection sites of Bgt and extends to the intercellular space. Yeast two‐hybrid, luciferase complementation imaging and bimolecular florescent complimentary analysis showed that TiAP1 interacted with the chitin deacetylase (BgtCDA1) of Bgt. The yeast expression, purification and in vitro test confirmed the chitin deacetylase activity of BgtCDA1. The bombardment and VIGS‐mediated host‐induced gene silencing showed that BgtCDA1 promotes the invasion of Bgt. Transcriptome analysis showed the cell wall xylan metabolism, lignin biosynthesis‐related and defence genes involved in the signal transduction were up‐regulated in the transgenic TiAP1 wheat induced by Bgt. The TiAP1 in wheat may inactivate the deacetylation function of BgtCDA1, cause chitin oligomers expose to wheat chitin receptor, then trigger the wheat immune response to inhibit the growth and penetration of Bgt, and thereby enhance the resistance of wheat to pathogens
    corecore