261 research outputs found

    Quantitative trait locus (QTL) mapping for 100-kernel weight of maize (Zea mays L.) under different nitrogen regimes

    Get PDF
    100-kernel weight (KW) is one of the most important agronomic traits in maize (Zea mays L.), related to yield. To realize its genetic basis, in this study, a recombinant inbred line (RIL) population derived from the cross between Mo17 and Huangzao4 was used for quantitative trait locus (QTL) mapping for KW under high and low nitrogen (N) regimes. As a result, five QTLs were identified on chromosomes 3, 4, 7 and 9, of which three were detected under both N environments, while the other two QTLs were respectively detected under high and low N regimes. These QTLs could explain phenotypic variance rom 4.47 to 14.47%. Due to additive effects, the three QTLs from Mo17, including two on chromosome 3 and one on chromosome 4, could increase KW from 0.64 to 1.01 g, while the other two from Huangzao4 on chromosomes 7 and 9 could decrease KW from 0.62 to 1.07 g. These results are beneficial for understanding the genetic basis of KW and developing the markers linked with KW for marker-assisted selection breeding in maize.Key words: Maize (Zea mays L.), 100-kernel weight, quantitative trait locus (QTL), recombinant inbred line (RIL), nitrogen regime

    Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope

    Get PDF
    In this paper, we will give a general introduction to the project of Ali CMB Polarization Telescope (AliCPT), which is a Sino-US joint project led by the Institute of High Energy Physics (IHEP) and has involved many different institutes in China. It is the first ground-based Cosmic Microwave Background (CMB) polarization experiment in China and an integral part of China's Gravitational Waves Program. The main scientific goal of AliCPT project is to probe the primordial gravitational waves (PGWs) originated from the very early Universe. The AliCPT project includes two stages. The first stage referred to as AliCPT-1, is to build a telescope in the Ali region of Tibet with an altitude of 5,250 meters. Once completed, it will be the worldwide highest ground-based CMB observatory and open a new window for probing PGWs in northern hemisphere. AliCPT-1 telescope is designed to have about 7,000 TES detectors at 90GHz and 150GHz. The second stage is to have a more sensitive telescope (AliCPT-2) with the number of detectors more than 20,000. Our simulations show that AliCPT will improve the current constraint on the tensor-to-scalar ratio rr by one order of magnitude with 3 years' observation. Besides the PGWs, the AliCPT will also enable a precise measurement on the CMB rotation angle and provide a precise test on the CPT symmetry. We show 3 years' observation will improve the current limit by two order of magnitude.Comment: 11 pages, 7 figures, 2 table

    A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma

    Get PDF
    Molecular profiling of lung cancer has become essential for prediction of an individual’s response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity

    Antibody-mediated Prevention of Fusarium Mycotoxins in the Field

    Get PDF
    Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB) pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed

    Inhibition of Intestinal Adenoma Formation in APCMin/+ Mice by Riccardin D, a Natural Product Derived from Liverwort Plant Dumortiera hirsuta

    Get PDF
    BACKGROUND: Mutation of tumor suppressor gene, adenomatous polyposis coli (APC), is the primary molecular event in the development of most intestinal carcinomas. Animal model with APC gene mutation is an effective tool for study of preventive approaches against intestinal carcinomas. We aimed to evaluate the effect of Riccardin D, a macrocyclic bisbibenzyl compound, as a chemopreventive agent against intestinal adenoma formation in APC(Min/+) mice. METHODS: APC(Min/+) mice were given Riccardin D by p.o. gavage for 7 weeks. Mice were sacrificed, and the number, size and histopathology of intestinal polyps were examined under a microscope. We performed immunohistochemical staining, western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) in intestinal polyps to investigate the mechanism of chemopreventive effect of Riccardin D. RESULTS: Riccardin D treatment resulted in a significant inhibition of intestinal adenoma formation, showing a reduction of polyp number by 41.7%, 31.1% and 44.4%, respectively, in proximal, middle and distal portions of small intestine. The activity of Riccardin D against polyp formation was more profound in colon, wherein Riccardin D decreased polyp number by 79.3%. Size distribution analysis revealed a significant reduction in large-size polyps (2-3 mm) by 40.0%, 42.5% and 33.3%, respectively, in proximal, middle and distal portions of small intestine, and 77.8% in colon. Histopathological analysis of the intestinal polyps revealed mostly hyperplastic morphology without obvious dysplasia in Riccardin D-treated mice. Molecular analyses of the polyps suggested that the inhibitory effect of Riccardin D on intestinal adenoma formation was associated with its abilities of reduction in cell proliferation, induction of apoptosis, antiangiogenesis, inhibition of the Wnt signaling pathway and suppression of inflammatory mediators in polyps. CONCLUSIONS: Our results suggested that Riccardin D exerts its chemopreventive effect against intestinal adenoma formation through multiple mechanisms including anti-proliferative, apoptotic, anti-angiogenic and anti-inflammatory activity
    • …
    corecore