4 research outputs found

    Risk Factors for Small Adult Height in Childhood Cancer Survivors

    No full text
    International audiencePURPOSE Between 10% and 20% of childhood cancer survivors (CCS) experience impaired growth, leading to small adult height (SAH). Our study aimed to quantify risk factors for SAH or growth hormone deficiency among CCS. METHODS The French CCS Study holds data on 7,670 cancer survivors treated before 2001. We analyzed self-administered questionnaire data from 2,965 CCS with clinical, chemo/radiotherapy data from medical records. SAH was defined as an adult height ≀ 2 standard deviation scores of control values obtained from a French population health study. RESULTS After exclusion of 189 CCS treated with growth hormone, 9.2% (254 of 2,776) had a SAH. Being young at the time of cancer treatment (relative risk [RR], 0.91 [95% CI, 0.88 to 0.95] by year of age), small height at diagnosis (≀ 2 standard deviation scores; RR, 6.74 [95% CI, 4.61 to 9.86]), pituitary irradiation (5-20 Gy: RR, 4.24 [95% CI, 1.98 to 9.06]; 20-40 Gy: RR, 10.16 [95% CI, 5.18 to 19.94]; and ≄ 40 Gy: RR, 19.48 [95% CI, 8.73 to 43.48]), having received busulfan (RR, 4.53 [95% CI, 2.10 to 9.77]), or > 300 mg/m 2 of lomustine (300-600 mg/m 2 : RR, 4.21 [95% CI, 1.61 to 11.01] and ≄ 600 mg/m 2 : RR, 9.12 [95% CI, 2.75 to 30.24]) were all independent risk factors for SAH. Irradiation of ≄ 7 vertebrae (≄ 15 Gy on ≄ 90% of their volume) without pituitary irradiation increased the RR of SAH by 4.62 (95% CI, 2.77 to 7.72). If patients had also received pituitary irradiation, this increased the RR by an additional factor of 1.3 to 2.4. CONCLUSION CCS are at a high risk of SAH. CCS treated with radiotherapy, busulfan, or lomustine should be closely monitored for growth, puberty onset, and potential pituitary deficiency

    Risk Factors of Subsequent Central Nervous System Tumors after Childhood and Adolescent Cancers: Findings from the French Childhood Cancer Survivor Study

    No full text
    International audienceAbstract Background: Childhood or adolescent cancer survivors are at increased risks of subsequent primary neoplasms (SPN) of the central nervous system (CNS) after cranial irradiation. In a large multicentric cohort, we investigated clinical and therapeutic factors associated with the long-term risk of CNS SPN, and quantified the dose–response relationships. Methods: We selected all CNS SPN cases diagnosed up to 2016 among members of the French Childhood Cancer Survivor Study at least 5 years after first cancer diagnosis in 1946–2000. Four controls per case were randomly selected within the cohort and matched by sex, year of/age at first cancer diagnosis, and follow-up time. On the basis of medical and radiological reports, cumulative radiation doses received to the SPN or matched location were retrospectively estimated using mathematical phantoms. We computed conditional logistic regression models. Results: Meningioma risk significantly increased with higher radiation doses [excess OR per Gy (EOR/Gy) = 1.377; P < 0.001; 86 cases; median latency time = 30 years], after adjustment for reported genetic syndromes and first CNS tumor. It was higher among youngest individuals at first cancer diagnosis, but did not vary with follow-up time. On the opposite, radiation-related glioma risk (EOR/Gy = 0.049; P = 0.11; 47 cases; median latency time = 17 years) decreased over time (P for time effect = 0.05). There was a significant association between meningioma risk and cumulative doses of alkylating agents, but no association with growth hormone therapy. Conclusions: The surveillance of patients with cranial irradiation should continue beyond 30 years after treatment. Impact: The identified risk factors may inform long-term surveillance strategies

    Risk Factors for Primary Bone Cancer after Childhood Cancer: A PanCare Childhood and Adolescent Cancer Survivor Care and Follow-Up Studies Nested Case-Control Study

    No full text
    International audiencePURPOSERadiation to the bone and exposure to alkylating agents increases the risk of bone cancer among survivors of childhood cancer, but there is uncertainty regarding the risks of bone tissue radiation doses below 10 Gy and the dose-response relationship for specific types of chemotherapy.METHODSTwelve European countries contributed 228 cases and 228 matched controls to a nested case-control study within a cohort of 69,460 5-year survivors of childhood cancer. Odds ratios (ORs) of developing bone cancer for different levels of cumulative radiation exposure and cumulative doses of specific types of chemotherapy were calculated. Excess ORs were calculated to investigate the shape and extent of any dose-response relationship.RESULTSThe OR associated with bone tissue exposed to 1-4 Gy was 4.8-fold (95% CI, 1.2 to 19.6) and to 5-9 Gy was 9.6-fold (95% CI, 2.4 to 37.4) compared with unexposed bone tissue. The OR increased linearly with increasing dose of radiation (Ptrend <.001) up to 78-fold (95% CI, 9.2 to 669.9) for doses of ≄40 Gy. For cumulative alkylating agent doses of 10,000-19,999 and ≄20,000 mg/m2, the radiation-adjusted ORs were 7.1 (95% CI, 2.2 to 22.8) and 8.3 (95% CI, 2.8 to 24.4), respectively, with independent contributions from each of procarbazine, ifosfamide, and cyclophosphamide. Other cytotoxics were not associated with bone cancer.CONCLUSIONTo our knowledge, we demonstrate - for the first time - that the risk of bone cancer is increased 5- to 10-fold after exposure of bone tissue to cumulative radiation doses of 1-9 Gy. Alkylating agents exceeding 10,000 mg/m2 increase the risk 7- to 8-fold, particularly following procarbazine, ifosfamide, and cyclophosphamide. These substantially elevated risks should be used to develop/update clinical follow-up guidelines and survivorship care plans
    corecore