16 research outputs found

    Yin-Yang Theory and Globalization

    Get PDF
    Based on the discourse of Yin-Yang theory, the paper is to study the relationship between globalization and anti-globalization, attempting to develop an interdisciplinary analytical method via the oriental philosophy. The paper attempts to constitute the following codes for reference in the analysis of international relations: (1) as an analytical model to deconstruct the diverse international phenomena via the oriental traditional philosophy (2) as a mirror or medium to learn international conflicts, helps to communicate ideas, and achieves the moral or ethical consensus; and (3) as a theoretical tool attempting to constitute a new discourse in IR study.Key words: Yin-Yang; Theory; Globalization;  International Relations; I Ching; Discours

    Robust Transmissions in Wireless Powered Multi-Relay Networks with Chance Interference Constraints

    Full text link
    In this paper, we consider a wireless powered multi-relay network in which a multi-antenna hybrid access point underlaying a cellular system transmits information to distant receivers. Multiple relays capable of energy harvesting are deployed in the network to assist the information transmission. The hybrid access point can wirelessly supply energy to the relays, achieving multi-user gains from signal and energy cooperation. We propose a joint optimization for signal beamforming of the hybrid access point as well as wireless energy harvesting and collaborative beamforming strategies of the relays. The objective is to maximize network throughput subject to probabilistic interference constraints at the cellular user equipment. We formulate the throughput maximization with both the time-switching and power-splitting schemes, which impose very different couplings between the operating parameters for wireless power and information transfer. Although the optimization problems are inherently non-convex, they share similar structural properties that can be leveraged for efficient algorithm design. In particular, by exploiting monotonicity in the throughput, we maximize it iteratively via customized polyblock approximation with reduced complexity. The numerical results show that the proposed algorithms can achieve close to optimal performance in terms of the energy efficiency and throughput.Comment: 14 pages, 8 figure

    Reliable Federated Learning for Mobile Networks

    Full text link
    Federated learning, as a promising machine learning approach, has emerged to leverage a distributed personalized dataset from a number of nodes, e.g., mobile devices, to improve performance while simultaneously providing privacy preservation for mobile users. In the federated learning, training data is widely distributed and maintained on the mobile devices as workers. A central aggregator updates a global model by collecting local updates from mobile devices using their local training data to train the global model in each iteration. However, unreliable data may be uploaded by the mobile devices (i.e., workers), leading to frauds in tasks of federated learning. The workers may perform unreliable updates intentionally, e.g., the data poisoning attack, or unintentionally, e.g., low-quality data caused by energy constraints or high-speed mobility. Therefore, finding out trusted and reliable workers in federated learning tasks becomes critical. In this article, the concept of reputation is introduced as a metric. Based on this metric, a reliable worker selection scheme is proposed for federated learning tasks. Consortium blockchain is leveraged as a decentralized approach for achieving efficient reputation management of the workers without repudiation and tampering. By numerical analysis, the proposed approach is demonstrated to improve the reliability of federated learning tasks in mobile networks

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Sum throughput optimization of wireless powered IRS-assisted multi-user MISO system

    No full text
    Intelligent reflecting surface (IRS) is a promising technology for beyond-5G wireless communication systems. However, the energy demand of IRS is often overlooked in existing works, leading to performance issues in practical scenarios. To address this issue, this paper proposes an operating model based on time switching (TS) protocol for an IRS-assisted multi-user multiple-input single-output (MISO) system, which can provide energy for IRS through wireless power transfer (WPT) technology. The system throughput maximization problem is addressed to improve performance. Specifically, a two-stage algorithm combined with alternating optimization, denoted as TAO, is proposed. To further improve the optimization process in large-size IRS scenarios, an improved deep deterministic policy gradient (DDPG) method combined with TAO, denoted as TAO-DDPG, is also proposed. Numerical results demonstrate that the proposed TAO-DDPG algorithm achieves similar performance to TAO while greatly reducing the optimization time

    Reliable Federated Learning for Mobile Networks

    No full text
    Federated learning, as a promising machine learning approach, has emerged to leverage a distributed personalized dataset from a number of nodes, for example, mobile devices, to improve performance while simultaneously providing privacy preservation for mobile users. In federated learning, training data is widely distributed and maintained on the mobile devices as workers. A central aggregator updates a global model by collecting local updates from mobile devices using their local training data to train the global model in each iteration. However, unreliable data may be uploaded by the mobile devices (i.e., workers), leading to frauds in tasks of federated learning. The workers may perform unreliable updates intentionally, for example, the data poisoning attack, or unintentionally, for example, low-quality data caused by energy constraints or high-speed mobility. Therefore, finding out trusted and reliable workers in federated learning tasks becomes critical. In this article, the concept of reputation is introduced as a metric. Based on this metric, a reliable worker selection scheme is proposed for federated learning tasks. Consortium blockchain is leveraged as a decentralized approach for achieving efficient reputation management of the workers without repudiation and tampering. By numerical analysis, the proposed approach is demonstrated to improve the reliability of federated learning tasks in mobile networks.This work was supported in part by Singapore NRF National Satellite of Excellence, Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007; A*STAR-NTU-SUTD Joint Research Grant Call on Artificial Intelligence for the Future of Manufacturing RGANS1906, WASP/NTU M4082187 (4080); Singapore MOE Tier 1 2017-T1-002-007 RG122/17, MOE Tier 2 MOE2014-T2-2-015 ARC4/15, Singapore NRF2015-NRF-ISF001-2277, and Singapore EMA Energy Resilience NRF2017EWT-EP003-041; and the National Natural Science Foundation of China under Grant 61601336

    Robust Transmissions in Wireless-Powered Multi-Relay Networks With Chance Interference Constraints

    No full text
    corecore