31 research outputs found

    Sentinel lymph node biopsy in oral cavity cancer using indocyanine green: A systematic review and meta-analysis

    Get PDF
    This meta-analysis was conducted to evaluate the value of indocyanine green (ICG) in guiding sentinel lymph node biopsy (SLNB) for patients with oral cavity cancer. An electronic database search (PubMed, MEDLINE, Cochrane Library, Embase, and Web of Science) was performed from their inception to June 2020 to retrieve clinical studies of ICG applied to SLNB for oral cavity cancer. Data were extracted from 14 relevant articles (226 patients), and 9 studies (134 patients) were finally included in the meta-analysis according to the inclusion and exclusion criteria. The pooled sentinel lymph node (SLN) sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 88.0% (95% confidence interval [CI], 74.0-96.0), 64.0% (95% CI, 61.0-66.0), 2.45 (95% CI, 1.31-4.60), 0.40 (95% CI, 0.17-0.90), and 7.30 (95% CI, 1.74-30.68), respectively. The area under the summary receiver operating characteristic curve was 0.8805. In conclusion, ICG applied to SLNB can effectively predict the status of regional lymph nodes in oral cavity cancer

    De Novo Design of a Single Chain Diphenylporphyrin Metalloprotein

    Get PDF
    We describe the computational design of a single-chain four-helix bundle that noncovalently self-assembles with fully synthetic non-natural porphyrin cofactors. With this strategy, both the electronic structure of the cofactor as well as its protein environment may be varied to explore and modulate the functional and photophysical properties of the assembly. Solution characterization (NMR, UV-vis) of the protein showed that it bound with high specificity to the desired cofactors, suggesting that a uniquely structured protein and well-defined site had indeed been created. This provides a genetically expressed single-chain protein scaffold that will allow highly facile, flexible, and asymmetric variations to enable selective incorporation of different cofactors, surface-immobilization, and introduction of spectroscopic probes

    Using α-Helical Coiled-Coils to Design Nanostructured Metalloporphyrin Arrays

    Get PDF
    We have developed a computational design strategy based on the alpha-helical coiled-coil to generate modular peptide motifs capable of assembling into metalloporphyrin arrays of varying lengths. The current study highlights the extension of a two-metalloporphyrin array to a four-metalloporphyrin array through the incorporation of a coiled-coil repeat unit. Molecular dynamics simulations demonstrate that the initial design evolves rapidly to a stable structure with a small rmsd compared to the original model. Biophysical characterization reveals elongated proteins of the desired length, correct cofactor stoichiometry, and cofactor specificity. The successful extension of the two-porphyrin array demonstrates how this methodology serves as a foundation to create linear assemblies of organized electrically and optically responsive cofactors

    Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers

    Get PDF
    Abstract(#br)China, inhabited by over 1.3 billion people and known for its genetic, cultural and linguistic diversity, is considered to be indispensable for understanding the association between language families and genetic diversity. In order to get a better understanding of the genetic diversity and forensic characteristics of Tai–Kadai-speaking populations in Southwest China, we genotyped 30 insertion/deletion (InDel) markers and amelogenin in 205 individuals from Tai–Kadai-speaking Bouyei people using the Qiagen Investigator DIPplex amplification kit. We carried out a comprehensive population genetic relationship investigation among 14,303 individuals from 84 worldwide populations based on allele frequency correlation and 4907 genotypes of 30 InDels from 36 populations distributed in..

    Mini percutaneous nephrolithotomy is a noninferior modality to standard percutaneous nephrolithotomy for the management of 20-40 mm renal calculi: A Multicenter randomized controlled trial

    Get PDF
    Background: High quality of evidence comparing mini percutaneous nephrolithotomy (mPNL) with standard percutaneous nephrolithotomy (sPNL) for the treatment of larger-sized renal stones is lacking. Objective: To compare the efficacy and safety of mPNL and sPNL for the treatment of 20–40 mm renal stones. Design, setting, and participants: A parallel, open-label, and noninferior randomized controlled trial was performed at 20 Chinese centers (2016–2019). The inclusion criteria were patients 18–70 yr old, with normal renal function, and 20–40 mm renal stones. Intervention: Percutaneous nephrolithotomy PNL was performed using either 18 F or 24 F percutaneous nephrostomy tracts. Outcome measurements and statistical analysis: The primary outcome was the one-session stone-free rate (SFR). The secondary outcomes included operating time, visual analog pain scale (VAS) score, blood loss, complications as per the Clavien-Dindo grading system, and length of hospitalization. Results and limitations: The 1980 intention-to-treat patients were randomized. The mPNL group achieved a noninferior one-session SFR to the sPNL group by the one-side noninferiority test (0.5% [difference], p < 0.001). The transfusion and embolization rates were comparable; however, the sPNL group had a higher hemoglobin drop (5.2 g/l, p < 0.001). The sPNL yielded shorter operating time (–2.2 min, p = 0.008) but a higher VAS score (0.8, p < 0.001). Patients in the sPNL group also had longer hospitalization (0.6 d, p < 0.001). There was no statistically significant difference in fever or urosepsis occurrences. The study's main limitation was that only 18F or 24F tract sizes were used. Conclusions: Mini mPNL achieves noninferior SFR outcomes to sPNL, but with reduced bleeding, less postoperative pain, and shorter hospitalization. Patient summary: We evaluated the surgical outcomes of percutaneous nephrolithotomy using two different sizes of nephrostomy tracts in a large population. We found that the smaller tract might be a sensible alternative for patients with 20–40 mm renal stones. This multicenter, parallel, open-label, and noninferior randomized controlled trial showed that mini percutaneous nephrolithotomy achieved noninferior stone-free rate with advantages of reduced blood loss, less postoperative pain, and shorter hospitalization. Mini percutaneous nephrolithotomy should be considered a sensible alternative treatment of 20–40 mm renal stones.grants from high-level development funding of Guangzhou Medical Universit

    Studies of synthetic protein models designed for biomolecular materials applications and model ion channels via molecular dynamics simulations

    No full text
    MD simulation has become an established and powerful tool to study large macromolecular systems including proteins in explicit solvent. Here simulation is applied to two types of synthetic protein models developed for biomolecular materials applications and for understanding complex biological problems, respectively. The simulation work presented in this thesis aims to facilitate the interpretation of experimental data and to provide detailed structural and dynamic information of protein models inaccessible by experiments. Several synthetic protein models have been investigated in this thesis. Firstly, the structure and dynamics of a de novo designed amphiphilic 4-α-helix bundle protein model capable of binding biological metallo-porphyrin cofactors are examined. The simulation results are in agreement with the experimental structural determinations available at lower resolution and limited dimension. Then the work proceeds to incorporate a more comprehensive nonbiological conjugated chromophore into this peptide model. The results show that the protein module plays an important role in controlling the chromophore\u27s conformation and dynamics that are critical to optimize its functionality. Secondly, based on the success of the first work, simulation is utilized to test the viability and help improve the design of two computational designed multi-metalloporphyrins binding protein assemblies, which have different structural features and potential applications. Thirdly, the protein model idea is applied to study the mechanism of the general anesthetic binding as well. The simplified model allows for more sophisticated physical techniques, such as infrared spectroscopy, to be used. MD simulation correctly predicts the infrared frequency shift of the vibrational probes at the binding site in the presence of anesthetics. It also provides the interpretation to the experimental results and reveals the nature of the weak bonding between anesthetics and the model ion channel peptide

    Attention-Based Multi-NMF Deep Neural Network with Multimodality Data for Breast Cancer Prognosis Model

    No full text
    Today, it has become a hot issue in cancer research to make precise prognostic prediction for breast cancer patients, which can not only effectively avoid overtreatment and medical resources waste, but also provide scientific basis to help medical staff and patients family members to make right medical decisions. As well known, cancer is a partly inherited disease with various important biological markers, especially the gene expression profile data and clinical data. Therefore, the accuracy of prediction model can be improved by integrating gene expression profile data and clinical data. In this paper, we proposed an end-to-end model, Attention-based Multi-NMF DNN (AMND), which combines clinical data and gene expression data extracted by Multiple Nonnegative Matrix Factorization algorithms (Multi-NMF) for the prognostic prediction of breast cancer. The innovation of this method is highlighted through using clinical data and combining multiple feature selection methods with the help of Attention mechanism. The results of comprehensive performance evaluation show that the proposed model reports better predictive performances than either models only using data of single modality, e.g., gene or clinical, or models based on any single NMF improved methods which only use one of the NMF algorithms to extract features. The performance of our model is competitive or even better than other previously reported models. Meanwhile, AMND can be extended to the survival prediction of other cancer diseases, providing a new strategy for breast cancer prognostic prediction

    Two New Seco-Labdane Diterpenoids from the Leaves of Callicarpa nudiflora

    No full text
    Two new seco-labdane diterpenoids, nudiflopene N (1) and nudiflopene O (2), and four known compounds were isolated from the leaves of Callicarpa nudiflora. The structures of the new compounds were established by 1D-, 2D-NMR, and HR-ESI-MS spectral analyses. Compounds 1&ndash;3 showed inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells, and new compounds 1&ndash;2 exhibited more potent inhibitory activity than compound 3. The cytotoxicity of compounds 1&ndash;3 against human hepatocellular carcinoma HepG2 cells and human gastric carcinoma SGC-7901 cells were evaluated, while all of them exhibited no cytotoxicity
    corecore