18 research outputs found

    VERY HIGH ENERGY γ-RAYS from the UNIVERSE'S MIDDLE AGE: DETECTION of the z = 0.940 BLAZAR PKS 1441+25 with MAGIC

    Get PDF
    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5σ using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale is estimated to be 6.4 ±1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy

    Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity

    Get PDF
    We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) 3-rays. A significant correlation (>3σ) between X-rays and VHE 3-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy 3-rays and radio, with the radio lagging by more than 100 days, placing the 3-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE 3-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock. © 2023. The Author(s). Published by the American Astronomical Society

    Multi-messenger characterization of Mrk 501 during historically low X-ray and γ\gamma-ray activity

    Full text link
    We study the broadband emission of Mrk 501 using multi-wavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi-LAT, NuSTAR, Swift, GASP-WEBT, and OVRO. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wavebands, with the highest occurring at X-rays and very-high-energy (VHE) γ\gamma-rays. A significant correlation (>>3σ\sigma) between X-rays and VHE γ\gamma-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between Swift-XRT and Fermi-LAT. We additionally find correlations between high-energy γ\gamma-rays and radio, with the radio lagging by more than 100 days, placing the γ\gamma-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE γ\gamma-rays from mid-2017 to mid-2019 with a stable VHE flux (>>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2-year-long low-state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED towards the low-state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock.Comment: 56 pages, 30 figures, 14 tables, submitted. Corresponding authors are L. Heckmann, D. Paneque, S. Gasparyan, M. Cerruti, and N. Sahakya

    Very-high-energy gamma-rays from the Universe's middle age: detection of the z=0.940 blazar PKS 1441+25 with MAGIC

    Get PDF
    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5 {sigma} using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability time scale is estimated to be 6.4 +/- 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.</p

    Clinical Case Discussions - ein neuartiges, supervidiertes Peer-Teaching-Format zur Förderung von Clinical Reasoning bei Medizinstudierenden

    No full text
    Background: Clinical reasoning (CR) is a clinical core competence for medical students to acquire. While the necessity for CR teaching has been recognized since the early 20th century, to this day no consensus on how to best educate students in CR exists. Hence, few universities have incorporated dedicated CR teaching formats into their medical curriculum. We propose a novel case-based, peer-taught and physician-supervised collaborative learning format, dubbed "Clinical Case Discussions" (CCDs) to foster CR in medical students.Project description: We present the curricular concept of CCDs and its development according to a six-step approach (problem identification and general needs assessment; targeted needs assessment; goals and objectives; educational strategies; implementation; evaluation and feedback). Our goal is to strengthen the physician roles (CanMEDS/NKLM) and CR competence of medical students. CCDs are offered at our institution as an elective course and students work on real-life, complex medical cases through a structured approach. Over the course of five years we evaluated various aspects of the course and trained student teachers to optimize our course concept according to the feedback of our participants. We also obtained intro and exit self-assessments of CR competence using an established CR questionnaire.Results: We found an unmet need for CR teaching, as medical students in their clinical years view CR as highly important for later practice, but only 50% have ever heard of CR within the curriculum. Acceptance of CCDs was consistently high with over 85% of participants strongly agreeing that they would re-participate in the course and recommend it to a friend. Additionally, we observed significant improvements in CR self-assessments of participants.Conclusion: CCDs are a feasible teaching format to improve students' CR competence, have a high acceptance and involve students in medical education through peer-teaching.Hintergrund: Clinical Reasoning (CR) ist eine klinische Kernkompetenz, die Medizinstudierende erwerben müssen. Obwohl schon im frühen 20. Jahrhundert die Notwendigkeit erkannt wurde, CR zu unterrichten, gibt es bis heute keinen Konsens darüber, wie man Studierende am besten in CR ausbildet. Daher haben nur wenige Universitäten dedizierte CR-Lehrformate in ihr medizinisches Curriculum integriert. Wir schlagen mit der sogenannten "Clinical Case Discussion" (CCD) ein neuartiges und fallbasiertes Peer-Teaching-Lehrformat zur Förderung von CR bei Medizinstudierenden vor, das von einem erfahrenen Kliniker supervidiert wird. Projektbeschreibung: Wir stellen das Konzept der CCDs und seine Entwicklung gemäß einer sechsstufigen Herangehensweise vor (Problemidentifizierung und allgemeine Bedarfsanalyse; spezielle Bedarfsanalyse; übergeordnete und spezifische Lernziele; Unterrichtsstrategien und -methoden; Implementierung; Evaluation und Feedback). Unser Ziel ist es, die ärztlichen Rollen (CanMEDS/NKLM) und die CR-Kompetenz Medizinstudierender zu stärken. CCDs werden an unserer Einrichtung als Wahlfach angeboten und die Studierenden arbeiten mittels eines strukturierten Ansatzes an komplexen medizinischen Fällen aus dem echten Leben. Im Laufe von 5 Jahren haben wir verschiedene Aspekte der CCD-Kurse ausgewertet und studentische Lehrende ausgebildet, um unser Kurskonzept auf der Grundlage des Feedbacks der Teilnehmenden zu optimieren. Darüber hinaus wurde deren selbsteingeschätzte CR-Kompetenz mithilfe eines etablierten Fragebogens zur Erfassung von CR jeweils am Anfang und am Ende der CCD-Kurse erfasst. Ergebnisse: Uns zeigte sich ein ungedeckter Bedarf an CR-Unterricht, da Medizinstudierende im klinischen Abschnitt CR zwar als sehr wichtig für die spätere berufliche Praxis erachten, aber nur 50% jemals im Rahmen des Curriculums von CR gehört haben. Die Akzeptanz für die CCDs war durchgehend hoch: 85% der Teilnehmenden stimmten voll zu, dass sie wieder teilnehmen und den Kurs weiterempfehlen würden. Zusätzlich beobachteten wir signifikante Verbesserungen bei den CR-Selbsteinschätzungen der Teilnehmenden. Schlussfolgerungen: CCDs eignen sich als Lehrformat zur Verbesserung der CR-Kompetenz von Studierenden, stoßen auf hohe Akzeptanz und binden die Studierenden über das Peer-Teaching in die medizinische Ausbildung ein

    VERY HIGH ENERGY gamma-RAYS FROM THE UNIVERSE'S MIDDLE AGE: DETECTION OF THE z=0.940 BLAZAR PKS 1441+25 WITH MAGIC

    No full text
    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5 sigma using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO. B0218 +357 (z = 0.944), PKS. 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale is estimated to be 6.4 +/- 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy
    corecore