199 research outputs found

    Functional properties of Lactobacillus plantarum strains: A multivariate screening study

    Get PDF
    Abstract Thirty-two Lactobacillus plantarum strains isolated from different sources were genetically characterized at subspecies level with recA gene based multiplex PCR and pulsed-field electrophoresis. All the strains were tested in vitro for functional properties (ability to form biofilms, agglutination of yeast cells, bile salt hydrolase activity, β-galactosidase activity, surface hydrophobicity, resistance to lysozyme, gastric juice and bile salts), for antimicrobial activity and for antibiotic resistance. The presence of bsh and msa genes and of the pln bacteriocin loci were also evaluated. Hierarchical cluster analysis was used to identify eight different plantaritypes sharing similar patterns of pln loci. A global functional score was calculated by transforming values for continuous in vitro functional properties in an ordinal scale by cluster analysis, while a nominal scale was used for the other properties. Multidimensional scaling was used to evaluate the similarity in functional properties among the isolates and to evaluate the relationships between source of isolation and functional properties. Nine strains showed the best in vitro functional potential and a significant relationship was found between source of isolation and functional score. This study confirmed a high heterogeneity in functional properties among L. plantarum strains and provides insight for optimal screening strategies

    Combined action of shiga toxin type 2 and subtilase cytotoxin in the pathogenesis of hemolytic uremic syndrome

    Get PDF
    Shiga toxin-producing E. coli (STEC) produces Stx1 and/or Stx2, and Subtilase cytotoxin (SubAB). Since these toxins may be present simultaneously during STEC infections, the purpose of this work was to study the co-action of Stx2 and SubAB. Stx2 + SubAB was assayed in vitro on monocultures and cocultures of human glomerular endothelial cells (HGEC) with a human proximal tubular epithelial cell line (HK-2) and in vivo in mice after weaning. The effects in vitro of both toxins, co-incubated and individually, were similar, showing that Stx2 and SubAB contribute similarly to renal cell damage. However, in vivo, co-injection of toxins lethal doses reduced the survival time of mice by 24 h and mice also suffered a strong decrease in the body weight associated with a lowered food intake. Co-injected mice also exhibited more severe histological renal alterations and a worsening in renal function that was not as evident in mice treated with each toxin separately. Furthermore, co-treatment induced numerous erythrocyte morphological alterations and an increase of free hemoglobin. This work shows, for the first time, the in vivo effects of Stx2 and SubAB acting together and provides valuable information about their contribution to the damage caused in STEC infections.Fil: Alvarez, Romina Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: GĂłmez, Fernando Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Zotta, Elsa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Paton, Adrienne W.. University of Adelaide; AustraliaFil: Paton, James C.. University of Adelaide; AustraliaFil: Ibarra, Cristina Adriana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Sacerdoti, Flavia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Amaral, MarĂ­a Marta. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentin

    Polymorphisms in stress response genes in Lactobacillus plantarum: implications for classification and heat stress response

    Get PDF
    The polymorphism of 5 stress response genes (hrcA, ctsR, clpP, ftsH, dnaK) in 32 Lactobacillus plantarum strains was evaluated by multilocus restriction typing (MLRT) and by sequence analysis of ctsR, hrcA and clpP genes. Both these approaches allowed the discrimination of the subspecies L. plantarum ssp. plantarum and L. plantarum ssp. argentoratensis. HrcA sequence analysis also allowed discrimination at the species and subspecies level of several species of lactic acid bacteria, thus confirming that it can be used as a valuable taxonomic marker. No significant relationship was found between stress response gene polymorphism and resistance to heat treatments. The effect of temperature on growth kinetics and the protein expression were investigated for selected strains carrying different mutations in hrcA. L. plantarum ssp. argentoratensis NCIMB12120 and L. plantarum ssp. plantarum DPC2159, both of which had mutations in domains of HrcA which are important for the repressor functionality, had a reduced growth rate at all temperatures tested (25, 30, 37, 40, and 42 °C) compared to L. plantarum WCFS1. In L. plantarum DPC2159, protein expression upon temperature shifts from 25 to 40 °C or growth at 40 °C was altered compared to L. plantarum WCFS1, but further study is needed to unequivocally confirm the relationship with mutations in hrcA

    Neon seeding effects on two high-performance baseline plasmas on the Joint European Torus

    Get PDF
    We present the JETTO-QuaLiKiz-SANCO fully predictive modelling of two JET-ILW high-performance baseline plasmas, a Ne seeded shot and an equivalent unseeded one. The motivation of the work lies in the experimental observation of a slightly higher confinement and performance of the Ne seeded shot with respect to the unseeded one, despite sharing the same main plasma parameters and heating powers. Moreover, the neon seeded shot shows a lower pedestal electron density and a higher core ion temperature with respect to the unseeded one. Integrated modelling is performed in order to understand if the cause of the improved confinement has to be ascribed to the improved pedestal parameters with neon seeding or if an impurity-induced turbulence stabilization is at play. The QuaLiKiz transport model is used for predicting the electron density, electron and ion temperatures and rotation in the core up to the pedestal top, while the pedestal is empirically modelled to reproduce the experimental kinetic profiles. The thermal diffusivities of the two shots, computed by QuaLiKiz, are compared, as well as the turbulence spectra, suggesting that the reduced transport found in the neon seeded shot is due in part to the stabilization of ion temperature gradient and electron temperature gradient modes. Further modelling is performed in order to disentangle the neon seeding effects, which are a direct effect on the turbulence stabilization and an indirect effect on the pedestal parameters. The results suggest that the improved performance with neon is due to a combination of turbulence stabilization and improved pedestal parameters

    Role of Nitric Oxide in Shiga Toxin-2-Induced Premature Delivery of Dead Fetuses in Rats

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) infections could be one of the causes of fetal morbimortality in pregnant women. The main virulence factors of STEC are Shiga toxin type 1 and/or 2 (Stx1, Stx2). We previously reported that intraperitoneal (i.p.) injection of rats in the late stage of pregnancy with culture supernatant from recombinant E. coli expressing Stx2 and containing lipopolysaccharide (LPS) induces premature delivery of dead fetuses. It has been reported that LPS may combine with Stx2 to facilitate vascular injury, which may in turn lead to an overproduction of nitric oxide (NO). The aim of this study was to evaluate whether NO is involved in the effects of Stx2 on pregnancy. Pregnant rats were i.p. injected with culture supernatant from recombinant E. coli containing Stx2 and LPS (sStx2) on day 15 of gestation. In addition, some rats were injected with aminoguanidine (AG), an inducible isoform inhibitor of NO synthase (iNOS), 24 h before and 4 h after sStx2 injection. NO production was measured by NOS activity and iNOS expression by Western blot analysis. A significant increase in NO production and a high iNOS expression was observed in placental tissues from rats injected with sStx2 containing 0.7 ng and 2 ng Stx2/g body weight and killed 12 h after injection. AG caused a significant reduction of sStx2 effects on the feto-maternal unit, but did not prevent premature delivery. Placental tissues from rats treated with AG and sStx2 presented normal histology that was indistinguishable from the controls. Our results reveal that Stx2-induced placental damage and fetus mortality is mediated by an increase in NO production and that AG is able to completely reverse the Stx2 damages in placental tissues, but not to prevent premature delivery, thus suggesting other mechanisms not yet determined could be involved

    Modelling performed for predictions of fusion power in JET DTE2: overview and lessons learnt

    Get PDF
    For more than a decade, an unprecedented predict-first activity has been carried in order to predict the fusion power and provide guidance to the second Deuterium–Tritium (D–T) campaign performed at JET in 2021 (DTE2). Such an activity has provided a framework for a broad model validation and development towards the D–T operation. It is shown that it is necessary to go beyond projections using scaling laws in order to obtain detailed physics based predictions. Furthermore, mixing different modelling complexity and promoting an extended interplay between modelling and experiment are essential towards reliable predictions of D–T plasmas. The fusion power obtained in this predict-first activity is in broad agreement with the one finally measured in DTE2. Implications for the prediction of fusion power in future devices, such as ITER, are discussed

    Overview of the FTU results

    Get PDF
    Since the 2018 IAEA FEC Conference, FTU operations have been devoted to several experiments covering a large range of topics, from the investigation of the behaviour of a liquid tin limiter to the runaway electrons mitigation and control and to the stabilization of tearing modes by electron cyclotron heating and by pellet injection. Other experiments have involved the spectroscopy of heavy metal ions, the electron density peaking in helium doped plasmas, the electron cyclotron assisted start-up and the electron temperature measurements in high temperature plasmas. The effectiveness of the laser induced breakdown spectroscopy system has been demonstrated and the new capabilities of the runaway electron imaging spectrometry system for in-flight runaways studies have been explored. Finally, a high resolution saddle coil array for MHD analysis and UV and SXR diamond detectors have been successfully tested on different plasma scenarios
    • …
    corecore