13 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Characterization of regulatory RNAs in Streptococcus agalactiae

    No full text
    Streptococcus agalactiae, appelé aussi Group B Streptococcus (GBS), est une bactérie commensale du tractus digestif et génital de diverses espèces animales dont l’espèce humaine. Elle représente la première cause d’infections néonatales et est aussi un pathogène émergent chez l’adulte immunodéprimé. L’objectif de ma thèse est la caractérisation fonctionnelle et mécanistique des ARNrég. J’ai étudié plus particulièrement l’ARNrég CetR (pour «cell-envelope-targeting RNA»). Il module la résistance au peptide antimicrobiens (PAM) et la virulence à travers la régulation post-transcriptionnelle de l’ARNm dltD codant une protéine de biosynthèse de l'acide D-alanyl-lipotéichoïque. La délétion de cetR induit des changements dans la morphologie cellulaire, une diminution de la formation du biofilm et de la résistance aux PAM. Une zone d’interaction, CetRdltD, de 27 nucléotides a été prédite in silico. Des mutations compensatoires chez GBS montrent que CetR interagit directement avec l’ARNm dltD et que la perturbation de la zone d’appariement est suffisante pour observer les phénotypes associés à CetR. La quantification des niveaux d’ARNm et de la protéine DltD nous a permis de montrer que CetR active la traduction de dltD et que la perturbation du duplex CetR-dltD induit une diminution spectaculaire de la protéine DltD. De plus, en utilisant un modèle murin d’infection et en quantifiant la survie des bactéries dans les macrophages, nous avons montré que CetR et DltD sont cruciaux pour la virulence de GBS. Enfin, une approche protéomique globale nous a permis de montrer que CetR joue un rôle important dans l’expression des protéines dites « moonlighting » et de certains facteurs de virulence potentiels. Cet ARNrég peut jouer un rôle important dans la capacité de S. agalactiae à s'établir dans son biotope et à exprimer ses facteurs de virulence. Enfin, les résultats de ces recherches sont des prérequis au développement de stratégies permettant de réduire le risque des infections néonatales dues à S. agalactiae.The opportunistic pathogen group B Streptococcus (GBS) is the leading cause of neonatal infections. The aim of this work is the characterization of a 680 nt-long regulatory RNA, CetR (cell-envelope-targeting RNA). It modulates antimicrobial peptides (AMPs) resistance and virulence through posttranscriptional regulation of dltD mRNA which encodes a D-alanyl-lipoteichoic acid biosynthesis protein. Deletion of cetR leads to cell morphology changes, reduced biofilm formation and AMPs resistance. A 27 nt-long CetR-dltD interacting region is predicted in silico. Compensatory base pair exchanges in GBS demonstrate that CetR interacts directly with dltD mRNA and that disruption of this RNA pairing is sufficient to observe the CetR-associated phenotypes. By quantifying both mRNA and protein, we demonstrate that CetR enhances dltD translation and disruption of the CetR/dltD mRNA interaction results in a dramatic decrease in DltD protein. Moreover, using an infection murine model and quantifying bacterial survival in macrophages, we observe that both CetR and DltD are crucial for GBS virulence. Finally, we highlight CetR pleiotropic role in the expression of several moonlighting proteins and potential virulence factors. This regulatory RNA may play an important role in the ability of GBS to settle in its biotope and express its virulence factors

    New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    No full text
    International audienceProteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications

    Regulatory RNAs in the Less Studied Streptococcal Species: from Nomenclature to Identification

    Get PDF
    Streptococcal species are Gram-positive bacteria involved in severe and invasive diseases in humans and animals. Although this group includes different pathogenic species involved in life-threatening infections for humans, it also includes beneficial species, such as Streptococcus thermophilus, which is used in yogurt production. In bacteria virulence factors are controlled by various regulatory networks including regulatory RNAs. For clearness and to develop logical thinking, we start this review with a revision of regulatory RNAs nomenclature. Previous reviews are mostly dealing with Streptococcus pyogenes and Streptococcus pneumoniae regulatory RNAs. We especially focused our analysis on regulatory RNAs in Streptococcus agalactiae, Streptococcus mutans, Streptococcus thermophilus and other less studied Streptococcus species. Although S. agalactiae RNome remains largely unknown, sRNAs (small RNAs) are supposed to mediate regulation during environmental adaptation and host infection. In the case of S. mutans, sRNAs are suggested to be involved in competence regulation, carbohydrate metabolism and Toxin-Antitoxin systems. A new category of miRNA-size small RNAs (msRNAs) was also identified for the first time in this species. The analysis of S. thermophilus sRNome shows that many sRNAs are associated to the bacterial immune system known as CRISPR-Cas system. Only few of the other different Streptococcus species have been the subject of studies pointed toward the characterization of regulatory RNAs. Finally, understanding bacterial sRNome can constitute one step forward to the elaboration of new strategies in therapy such as substitution of antibiotics in the management of S. agalactiae neonatal infections, prevention of S. mutans dental caries or use of S. thermophilus CRISPR-Cas system in genome editing applications

    Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    Get PDF
    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the fiel

    Small Non-coding RNAs in Streptococci

    Get PDF
    The Editorial on the Research Topic : Small Non-coding RNAs in StreptococciBacterial small RNAs (sRNAs) are post-transcriptional regulators of gene expression and the mechanisms by which this can occur have begun to be understood (Gottesman and Storz, 2011). In pathogenic bacteria, the importance of sRNAs-mediated regulation depends on a fine-tuning of the expression of various virulence gene

    Regulatory RNAs in the Less Studied Streptococcal Species: from Nomenclature to Identification

    No full text
    Streptococcal species are Gram-positive bacteria involved in severe and invasive diseases in humans and animals. Although this group includes different pathogenic species involved in life-threatening infections for humans, it also includes beneficial species, such as Streptococcus thermophilus, which is used in yogurt production. In bacteria virulence factors are controlled by various regulatory networks including regulatory RNAs. For clearness and to develop logical thinking, we start this review with a revision of regulatory RNAs nomenclature. Previous reviews are mostly dealing with Streptococcus pyogenes and Streptococcus pneumoniae regulatory RNAs. We especially focused our analysis on regulatory RNAs in Streptococcus agalactiae, Streptococcus mutans, Streptococcus thermophilus and other less studied Streptococcus species. Although S. agalactiae RNome remains largely unknown, sRNAs (small RNAs) are supposed to mediate regulation during environmental adaptation and host infection. In the case of S. mutans, sRNAs are suggested to be involved in competence regulation, carbohydrate metabolism and Toxin-Antitoxin systems. A new category of miRNA-size small RNAs (msRNAs) was also identified for the first time in this species. The analysis of S. thermophilus sRNome shows that many sRNAs are associated to the bacterial immune system known as CRISPR-Cas system. Only few of the other different Streptococcus species have been the subject of studies pointed toward the characterization of regulatory RNAs. Finally, understanding bacterial sRNome can constitute one step forward to the elaboration of new strategies in therapy such as substitution of antibiotics in the management of S. agalactiae neonatal infections, prevention of S. mutans dental caries or use of S. thermophilus CRISPR-Cas system in genome editing applications

    The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival

    No full text
    International audienceABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb , adcA , and adcAII , or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae . This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids
    corecore