1,349 research outputs found

    Dust particles from comets and asteroids collected at the Earth's orbit: Parent-daughter relationships

    Get PDF
    The relative contributions of comets and asteroids to the reservoir of dust in the interplanetary medium is not well known. There are direct observations of dust released from comets and there is evidence to associate the IRAS dust bands with possible collisions of Asteroids in the main belt. It is believed that one may combine lab analysis of the physics and chemistry of captured particles with orbital data in order to identify comet and asteroid parent bodies. It is possible to use the collected orbits of the dust to connect with its source in two ways. One is to consider the long time orbit evolution of the dust under Poynting-Robertson drag. The other is to look at the prompt orbit change of dust from comets onto trajectories that intersect the earth's orbit. In order to characterize the orbits of dust particles evolved over a long period of time, a study of its orbital evolution was undertaken. Various parameters associated with these dust orbits as they cross the Earth's orbit were considered in order to see if one may discriminate between particles evolved from comets and asteroids. The method was to calculate by a numerical procedure the orbits of dust particles after they left their parent bodies. It appears that as the particles pass the Earth's orbit, asteroidal grains and cometary grains can be differentiated on the basis of their measured orbital eccentricities even after much planetary perturbation. Broad parent daughter associations can be made on this basis from measurement of their trajectories intercepted in earth orbit

    Meteoroid capture cell construction

    Get PDF
    A thin membrane covering the open side of a meteoroid capture cell causes an impacting meteoroid to disintegrate as it penetrates the membrane. The capture cell then contains and holds the meteoroid particles for later analysis

    Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System

    Get PDF
    Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3-30 degrees from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. We also apply a simple model that attributes the zodiacal light as being due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs), dust from Halley-type comets, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross-section seen in the ecliptic at 1 AU, but that at least 89% of the dust cross-section enclosed by a 1 AU radius sphere is of a cometary origin. When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12 km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30 km comet, although the latter mass is uncertain by orders of magnitude.Comment: To be published in Icaru

    Bounds on the entanglability of thermal states in liquid-state nuclear magnetic resonance

    Full text link
    The role of mixed state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well-understood. In particular, despite the success of quantum information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size NN and its temperature TT. We provide new bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as NTN \sim T, giving a lower bound requiring at least N22,000N \sim 22,000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states.Comment: REVTeX4, 15 pages, 4 figures (one large figure: 414 K

    Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Get PDF
    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized

    Continued investigation of LDEF's structural frame and thermal blankets by the Meteoroid and Debris Special Investigation Group

    Get PDF
    This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions

    Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry

    The solar maximum satellite capture cell: Impact features and orbital debris and micrometeoritic projectile materials

    Get PDF
    The physical properties of impact features observed in the Solar Max main electronics box (MEB) thermal blanket generally suggest an origin by hypervelocity impact. The chemistry of micrometeorite material suggests that a wide variety of projectile materials have survived impact with retention of varying degrees of pristinity. Impact features that contain only spacecraft paint particles are on average smaller than impact features caused by micrometeorite impacts. In case both types of materials co-occur, it is belevied that the impact feature, generally a penetration hole, was caused by a micrometeorite projectile. The typically smaller paint particles were able to penetrate though the hole in the first layer and deposit in the spray pattern on the second layer. It is suggested that paint particles have arrived with a wide range of velocities relative to the Solar Max satellite. Orbiting paint particles are an important fraction of materials in the near-Earth environment. In general, the data from the Solar Max studies are a good calibration for the design of capture cells to be flown in space and on board Space Station. The data also suggest that development of multiple layer capture cells in which the projectile may retain a large degree of pristinity is a feasible goal

    Hematologic effects of placental pathology on very low birthweight infants born to mothers with preeclampsia.

    Get PDF
    OBJECTIVE: To investigate the effect of placental pathology on neonatal neutrophils, platelets, hematocrit and nucleated red blood cells in very low birthweight (VLBW) infants born to mothers with preeclampsia. STUDY DESIGN: Retrospective cohort study of infants with birthweight \u3c 1500 g born to mothers with preeclampsia from july, 2002 to july, 2006 at a single level III neonatal intensive care unit. Placental pathology was reviewed for the presence of placental infarction and vasculopathy. Hematologic parameters from day of life 0, 1 and 2 were obtained. Statistical analysis included repeated-measures analysis of variance and multivariable analysis using logistic regression. RESULT: The study sample included 203 infants with estimated gestational age of 28+/-3 weeks; 45% had placental infarctions and 26% placental vasculopathy. Infants with neutropenia and thrombocytopenia did not have an increased occurrence of placental infarction or maternal vasculopathy but were more likely to be of small gestational age (SGA) and of lower gestational age compared with infants without neutropenia or thrombocytopenia. After multivariable analysis, gestational age and SGA remained associated with both neutropenia and thrombocytopenia whereas placental infarction and vasculopathy did not remain in the models. CONCLUSION: In our population of VLBW infants born to mothers with preeclampsia, placental pathology was common. There was no association of placental infarction or vasculopathy with neonatal neutropenia and thrombocytopenia. The data suggest that neonatal hematologic effects of maternal preeclampsia, if related to the placenta, are associated with factors other than placental histology
    corecore