4,220 research outputs found
Teaching and Learning by Analogy: Psychological Perspectives on the Parables of Jesus
Christian teachers are often encouraged to use Jesus’ teaching strategies as models for their own pedagogy. Jesus frequently utilized analogical comparisons, or parables, to help his learners understand elements of his Gospel message. Although teachers can use analogical models to facilitate comprehension, such models also can sow the seeds of confusion and misconception. Recent advances in cognitive psychology have provided new theoretical frameworks to help us understand how instructional analogies function in the teaching-learning process. The goal of this paper is to analyze Jesus’ analogical teaching from these psychological perspectives, with implications for all teachers who utilize instructional analogies. In addition to reviewing basic analogical learning processes, I explore a six-variable model to account systematically for potential analogical misconceptions
Selected Characteristics of Savings and Thrift Plans for Private Industry Workers
[Excerpt] This issue of Beyond the Numbers looks at the growth in the prevalence and at selected characteristics of employer-provided savings and thrift plans in private industry in the United States. The data for this article come from the National Compensation Survey: Health and Retirement Plan Provisions in Private Industry in the United States, 2012. In some instances, comparisons of 2012 data are made to 2009 data, which came from National Compensation Survey: Health and Retirement Plan Provisions in Private Industry in the United States, 2009
Meteoroid capture cell construction
A thin membrane covering the open side of a meteoroid capture cell causes an impacting meteoroid to disintegrate as it penetrates the membrane. The capture cell then contains and holds the meteoroid particles for later analysis
Chicago Board of Trade Ethanol Contract Efficiency
Firms producing ethanol may find management of the price risk associated with production of this leading alternative fuel a key factor to continued success. As with other agricultural commodities, the influence and ability of futures contracts to serve as a risk management tool deserves attention.contract efficiency, ethanol, futures contracts, Crop Production/Industries, Risk and Uncertainty, Q13, Q43, M31,
Dust particles from comets and asteroids collected at the Earth's orbit: Parent-daughter relationships
The relative contributions of comets and asteroids to the reservoir of dust in the interplanetary medium is not well known. There are direct observations of dust released from comets and there is evidence to associate the IRAS dust bands with possible collisions of Asteroids in the main belt. It is believed that one may combine lab analysis of the physics and chemistry of captured particles with orbital data in order to identify comet and asteroid parent bodies. It is possible to use the collected orbits of the dust to connect with its source in two ways. One is to consider the long time orbit evolution of the dust under Poynting-Robertson drag. The other is to look at the prompt orbit change of dust from comets onto trajectories that intersect the earth's orbit. In order to characterize the orbits of dust particles evolved over a long period of time, a study of its orbital evolution was undertaken. Various parameters associated with these dust orbits as they cross the Earth's orbit were considered in order to see if one may discriminate between particles evolved from comets and asteroids. The method was to calculate by a numerical procedure the orbits of dust particles after they left their parent bodies. It appears that as the particles pass the Earth's orbit, asteroidal grains and cometary grains can be differentiated on the basis of their measured orbital eccentricities even after much planetary perturbation. Broad parent daughter associations can be made on this basis from measurement of their trajectories intercepted in earth orbit
All-optical steering of light via spatial Bloch oscillations in a gas of three-level atoms
A standing-wave control field applied to a three-level atomic medium in a
planar hollow-core photonic crystal waveguide creates periodic variations of
linear and nonlinear refractive indexes of the medium. This property can be
used for efficient steering of light. In this work we study, both analytically
and numerically, the dynamics of probe optical beams in such structures. By
properly designing the spatial dependence of the nonlinearity it is possible to
induce long-living Bloch oscillations of spatial gap solitons, thus providing
desirable change in direction of the beam propagation without inducing
appreciable diffraction. Due to the significant enhancement of the
nonlinearity, such self-focusing of the probe beam can be reached at extremely
weak light intensities.Comment: 8 pages, 4 figure
VARIABLE INTEREST RATES AND THE FINANCIAL PERFORMANCE OF DAIRY FARM BUSINESSES
Resource /Energy Economics and Policy,
In Situ Hybridization Screening of a Lambda Library for Chromosome Specific DNA: The Isolation of a Rabbit Chromosome Number 9 Probe
Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System
Using the Moon to occult the Sun, the Clementine spacecraft used its
navigation cameras to map the inner zodiacal light at optical wavelengths over
elongations of 3-30 degrees from the Sun. This surface brightness map is then
used to infer the spatial distribution of interplanetary dust over heliocentric
distances of about 10 solar radii to the orbit of Venus. We also apply a simple
model that attributes the zodiacal light as being due to three dust populations
having distinct inclination distributions, namely, dust from asteroids and
Jupiter-family comets (JFCs), dust from Halley-type comets, and an isotropic
cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that
asteroids + JFCs are the source of about 45% of the optical dust cross-section
seen in the ecliptic at 1 AU, but that at least 89% of the dust cross-section
enclosed by a 1 AU radius sphere is of a cometary origin. When these results
are extrapolated out to the asteroid belt, we find an upper limit on the mass
of the light-reflecting asteroidal dust that is equivalent to a 12 km asteroid,
and a similar extrapolation of the isotropic dust cloud out to Oort Cloud
distances yields a mass equivalent to a 30 km comet, although the latter mass
is uncertain by orders of magnitude.Comment: To be published in Icaru
- …
