13 research outputs found

    Fuzzy XML data management

    No full text
    This book presents an exhaustive and timely review of key research work on fuzzy XML data management, and provides readers with a comprehensive resource on the state-of-the art tools and theories in this fast growing area.  Topics covered in the book include: representation of fuzzy XML, query of fuzzy XML, fuzzy database models, extraction of fuzzy XML from fuzzy database models, reengineering of fuzzy XML into fuzzy database models, and reasoning of fuzzy XML. The book is intended as a reference guide for researchers, practitioners and graduate students working and/or studying in the field of Web Intelligence, as well as for data and knowledge engineering professionals seeking new approaches to replace traditional methods, which may be unnecessarily complex or even unproductive

    Fuzzy knowledge management for the semantic web

    No full text
    This book goes to great depth concerning the fast growing topic of technologies and approaches of fuzzy logic in the Semantic Web. The topics of this book include fuzzy description logics and fuzzy ontologies, queries of fuzzy description logics and fuzzy ontology knowledge bases, extraction of fuzzy description logics and ontologies from fuzzy data models, storage of fuzzy ontology knowledge bases in fuzzy databases, fuzzy Semantic Web ontology mapping, and fuzzy rules and their interchange in the Semantic Web. The book aims to provide a single record of current research in the fuzzy knowledge representation and reasoning for the Semantic Web. The objective of the book is to provide the state of the art information to researchers, practitioners and graduate students of the Web intelligence and at the same time serve the knowledge and data engineering professional faced with non-traditional applications that make the application of conventional approaches difficult or impossible

    Fuzzy XML Data Management

    No full text
    XI, 210 p. 55 illus.online resource

    An Overdispersed Black-Box Variational Bayesian–Kalman Filter with Inaccurate Noise Second-Order Statistics

    No full text
    Aimed at the problems in which the performance of filters derived from a hypothetical model will decline or the cost of time of the filters derived from a posterior model will increase when prior knowledge and second-order statistics of noise are uncertain, a new filter is proposed. In this paper, a Bayesian robust Kalman filter based on posterior noise statistics (KFPNS) is derived, and the recursive equations of this filter are very similar to that of the classical algorithm. Note that the posterior noise distributions are approximated by overdispersed black-box variational inference (O-BBVI). More precisely, we introduce an overdispersed distribution to push more probability density to the tails of variational distribution and incorporated the idea of importance sampling into two strategies of control variates and Rao–Blackwellization in order to reduce the variance of estimators. As a result, the convergence process will speed up. From the simulations, we can observe that the proposed filter has good performance for the model with uncertain noise. Moreover, we verify the proposed algorithm by using a practical multiple-input multiple-output (MIMO) radar system

    A Global Structure and Adaptive Weight Aware ICP Algorithm for Image Registration

    No full text
    As an important technology in 3D vision, point-cloud registration has broad development prospects in the fields of space-based remote sensing, photogrammetry, robotics, and so on. Of the available algorithms, the Iterative Closest Point (ICP) algorithm has been used as the classic algorithm for solving point cloud registration. However, with the point cloud data being under the influence of noise, outliers, overlapping values, and other issues, the performance of the ICP algorithm will be affected to varying degrees. This paper proposes a global structure and adaptive weight aware ICP algorithm (GSAW-ICP) for image registration. Specifically, we first proposed a global structure mathematical model based on the reconstruction of local surfaces using both the rotation of normal vectors and the change in curvature, so as to better describe the deformation of the object. The model was optimized for the convergence strategy, so that it had a wider convergence domain and a better convergence effect than either of the original point-to-point or point-to-point constrained models. Secondly, for outliers and overlapping values, the GSAW-ICP algorithm was able to assign appropriate weights, so as to optimize both the noise and outlier interference of the overall system. Our proposed algorithm was extensively tested on noisy, anomalous, and real datasets, and the proposed method was proven to have a better performance than other state-of-the-art algorithms
    corecore