6 research outputs found

    Robotic arm-assisted total hip arthroplasty for preoperative planning and intraoperative decision-making

    No full text
    Abstract Aims This article aimed to explore the efficacy of robotic arm-assisted total hip arthroplasty (THA) in improving preoperative planning and intraoperative decision-making. Methods In this single-center, prospective, randomized clinical controlled trial, 60 patients were randomly divided into two groups: conventional THA (cTHA) and robotic arm-assisted THA (rTHA). The rTHA underwent procedures using a robot-assisted surgical system, which generated three-dimensional models to determine the most appropriate prosthesis size and position. The standard process of replacement was executed in cTHA planned preoperatively via X-ray by experienced surgeons. Differences between predicted and actual prosthetic size, prosthetic position, and leg length were evaluated. Results Sixty patients were included in the study, but one patient was not allocated due to anemia. No significant preoperative baseline data difference was found between the two groups. The actual versus predicted implantation size of both groups revealed that 27/30 (90.0%) in the rTHA group and 25/29 (86.2%) in the cTHA group experienced complete coincidence. The coincidence rate for the femoral stem was higher in the rTHA group (83.3%) than that in the cTHA group (62.7%). Between the actual and predicted rTHA, the difference in anteversion/inclination degree (< 6°) was largely dispersed, while cTHA was more evenly distributed in degree (< 9°). The differences in leg length between the surgical side and contralateral side showed a significant deviation when comparing the two groups (P = 0.003), with 0.281 (− 4.17 to 3.32) mm in rTHA and 3.79 (1.45–6.42) mm in cTHA. Conclusion Robotic arm-assisted total hip arthroplasty can be valuable for preoperative planning and intraoperative decision-making

    Evaluation of microbial communities of Chinese Feng-flavor Daqu with effects of environmental factors using traceability analysis

    No full text
    Abstract Analysis of the changes of microorganisms during Chinese Feng-flavor Daqu fermentation, and the specific contribution of different environmental factors to Daqu microorganisms. High throughput sequencing technology and SourceTracker software were used to analyze the microbial diversity of Feng-flavor Daqu before and after fermentation. 85 fungal and 105 bacterial were detected in the newly pressed Feng-flavor Daqu, while 33 fungal and 50 bacterial in the mature Daqu, and 202 fungal and 555 bacterial in the environmental samples. After fermentation, the microbial community structure of Daqu changed and decreased significantly. 94.7% of fungi come from raw materials and 1.8% from outdoor ground, 60.95% of bacteria come from indoor ground, 20.44% from raw materials, and 8.98% from tools. By comparing the changes of microorganisms in Daqu before and after fermentation, the microorganisms in mature Daqu may mainly come from not only the enhanced strains but also the environment.The source of main microorganisms in Feng-flavor Daqu and the influence of environmental factors on the quality of Daqu were clarified, which provided a basis for improving the quality of Feng-flavor Daqu

    Chromatograph Skeleton Components of Feng-flavor Baijiu during Different Production Stages

    No full text
    Production of Feng-flavor baijiu includes six stages (first fermented stage, second fermented stage, third fermented stage, normal fermented stage and quitting fermented stage, ending of fermented stage). Each stage of the base liquor has its own style. The main chromatogram structure components were analyzed by gas chromatography (GC), to explore the characteristics of base baijiu during different production stages, which can provide a reference for classification storage and body design of baijiu

    Perioperative safety and efficacy of robot-assisted total hip arthroplasty in ERAS-managed patients: a pilot study

    No full text
    Abstract Aims Robot-assisted total hip arthroplasty (rTHA) boasts superior accuracy in implant placement, but there is a lack of effective assessment in perioperative management in the context of enhanced recovery after surgery (ERAS). This study aimed to compare the effectiveness and safety of rTHA versus conventional total hip arthroplasty (cTHA) in ERAS-managed patients. Methods In this prospective trial, a total of 60 eligible patients aged between 18 and 80 years were randomly divided into two groups to undergo either rTHA or cTHA. The primary outcomes included blood loss parameters. Secondary outcomes were the duration of the operation, surgical time, WOMAC pain score, WOMAC stiffness score, WOMAC physical function score, Harris score, and postoperative complications. Results The study cohort analyzed 59 eligible participants, 30 of whom underwent rTHA and 29 of whom underwent cTHA. Analysis could not be conducted for one patient due to severe anemia. Notably, the cTHA group had a significantly shorter surgical time than the rTHA group (69.49 ± 18.97 vs. 104.20 ± 19.63 min, P < 0.001). No significant differences were observed between the rTHA and cTHA groups for blood loss parameters, including total blood loss (1280.30 ± 404.01 vs. 1094.86 ± 494.39 ml, P = 0.137) and drainage volume (154.35 ± 121.50 vs. 159.13 ± 135.04 ml, P = 0.900), as well as intraoperative blood loss (126.67 ± 38.80 vs. 118.52 ± 60.68 ml, P = 0.544) and hidden blood loss (982.43 ± 438.83 vs. 784.00 ± 580.96 ml, P = 0.206). Only one patient in the cTHA group required allogeneic blood transfusion. At 3 months postoperatively, both groups showed improvements in WOMAC pain score, WOMAC stiffness score, WOMAC physical function score, and Harris score, with no significant differences found between the two groups. Few complications were reported in both groups without significant differences. Conclusions Despite the longer surgical time, rTHA did not negatively affect blood loss, pain, or functional recovery or lead to an increased risk of complications in ERAS-managed patients, suggesting that rTHA can be safely and effectively incorporated into an ERAS program for primary THA

    Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections

    No full text
    Abstract Implant-associated infections due to the formation of bacterial biofilms pose a serious threat in medical healthcare, which needs effective therapeutic methods. Here, we propose a multifunctional nanoreactor by spatiotemporal ultrasound-driven tandem catalysis to amplify the efficacy of sonodynamic and chemodynamic therapy. By combining piezoelectric barium titanate with polydopamine and copper, the ultrasound-activated piezo-hot carriers transfer easily to copper by polydopamine. It boosts reactive oxygen species production by piezoelectrics, and facilitates the interconversion between Cu2+ and Cu+ to promote hydroxyl radical generation via Cu+ -catalyzed chemodynamic reactions. Finally, the elevated reactive oxygen species cause bacterial membrane structure loosening and DNA damage. Transcriptomics and metabolomics analysis reveal that intracellular copper overload restricts the tricarboxylic acid cycle, promoting bacterial cuproptosis-like death. Therefore, the polyetherketoneketone scaffold engineered with the designed nanoreactor shows excellent antibacterial performance with ultrasound stimulation and promotes angiogenesis and osteogenesis on-demand in vivo
    corecore