14 research outputs found

    Artificial intelligence techniques for ground fault line selection in power systems: State-of-the-art and research challenges

    Get PDF
    In modern power systems, efficient ground fault line selection is crucial for maintaining stability and reliability within distribution networks, especially given the increasing demand for energy and integration of renewable energy sources. This systematic review aims to examine various artificial intelligence (AI) techniques employed in ground fault line selection, encompassing artificial neural networks, support vector machines, decision trees, fuzzy logic, genetic algorithms, and other emerging methods. This review separately discusses the application, strengths, limitations, and successful case studies of each technique, providing valuable insights for researchers and professionals in the field. Furthermore, this review investigates challenges faced by current AI approaches, such as data collection, algorithm performance, and real-time requirements. Lastly, the review highlights future trends and potential avenues for further research in the field, focusing on the promising potential of deep learning, big data analytics, and edge computing to further improve ground fault line selection in distribution networks, ultimately enhancing their overall efficiency, resilience, and adaptability to evolving demands

    Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography

    No full text
    The genesis of deeply buried deposits in the Duobaoshan ore district, the largest porphyry-related Cu-Mo-Au ore field in northeastern China, is not well understood and their exploration is lacking because the fine velocity structure of this region is not comprehensively understood. Herein, first-arrival seismic travel times were picked along a deep seismic reflection profile and inverted using the tomographic method to obtain a detailed velocity profile of the upper 2900 m of the crust beneath this region. The profile showed that the velocity varied from 1900 to 6100 m/s and that the crust was subdivided into five parts by two low-velocity (2500–4000 m/s) blocks. Based on previous studies, the boundaries between the high-speed and low-speed bodies were interpreted as hidden fractures, and the 5000–6100 m/s parts were interpreted as concealed granite bodies in these sections. Porphyry copper deposits in the Duobaoshan ore district were related to the occulted granite bodies, and epithermal Au deposits were associated with the occulted fracture zones. Comprehensive evaluation of hydrothermal activity, regional magnetic anomalies, and deposit distribution indicated that the hidden fractures served as channels for ore-related magmas. Combining previous research on the Duobaoshan ore district with our results of the high-velocity interface, we infer that the prospecting range of the Tongshan deposit is below the depth of 1000 m

    Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography

    No full text
    The genesis of deeply buried deposits in the Duobaoshan ore district, the largest porphyry-related Cu-Mo-Au ore field in northeastern China, is not well understood and their exploration is lacking because the fine velocity structure of this region is not comprehensively understood. Herein, first-arrival seismic travel times were picked along a deep seismic reflection profile and inverted using the tomographic method to obtain a detailed velocity profile of the upper 2900 m of the crust beneath this region. The profile showed that the velocity varied from 1900 to 6100 m/s and that the crust was subdivided into five parts by two low-velocity (2500–4000 m/s) blocks. Based on previous studies, the boundaries between the high-speed and low-speed bodies were interpreted as hidden fractures, and the 5000–6100 m/s parts were interpreted as concealed granite bodies in these sections. Porphyry copper deposits in the Duobaoshan ore district were related to the occulted granite bodies, and epithermal Au deposits were associated with the occulted fracture zones. Comprehensive evaluation of hydrothermal activity, regional magnetic anomalies, and deposit distribution indicated that the hidden fractures served as channels for ore-related magmas. Combining previous research on the Duobaoshan ore district with our results of the high-velocity interface, we infer that the prospecting range of the Tongshan deposit is below the depth of 1000 m

    Human dental stem cell derived transgene-free iPSCs generate functional neurons via embryoid body-mediated and direct induction methods.

    No full text
    Induced pluripotent stem cells (iPSCs) give rise to neural stem/progenitor cells, serving as a good source for neural regeneration. Here, we established transgene-free (TF) iPSCs from dental stem cells (DSCs) and determined their capacity to differentiate into functional neurons in vitro. Generated TF iPSCs from stem cells of apical papilla and dental pulp stem cells underwent two methods-embryoid body-mediated and direct induction, to guide TF-DSC iPSCs along with H9 or H9 Syn-GFP (human embryonic stem cells) into functional neurons in vitro. Using the embryoid body-mediated method, early stage neural markers PAX6, SOX1, and nestin were detected by immunocytofluorescence or reverse transcription-real time polymerase chain reaction (RT-qPCR). At late stage of neural induction measured at Weeks 7 and 9, the expression levels of neuron-specific markers Nav1.6, Kv1.4, Kv4.2, synapsin, SNAP25, PSD95, GAD67, GAP43, and NSE varied between stem cells of apical papilla iPSCs and H9. For direct induction method, iPSCs were directly induced into neural stem/progenitor cells and guided to become neuron-like cells. The direct method, while simpler, showed cell detachment and death during the differentiation process. At early stage, PAX6, SOX1 and nestin were detected. At late stage of differentiation, all five genes tested, nestin, βIII-tubulin, neurofilament medium chain, GFAP, and Nav, were positive in many cells in cultures. Both differentiation methods led to neuron-like cells in cultures exhibiting sodium and potassium currents, action potential, or spontaneous excitatory postsynaptic potential. Thus, TF-DSC iPSCs are capable of undergoing guided neurogenic differentiation into functional neurons in vitro, thereby may serve as a cell source for neural regeneration. J Tissue Eng Regen Med 2018 Apr; 12(4):e1836-e1851

    Role of molecular mimicry of hepatitis C virus protein with platelet GPIIIa in hepatitis C–related immunologic thrombocytopenia

    No full text
    Patients with HIV-1 immune-related thrombocytopenia (HIV-1–ITP) have a unique Ab against platelet GPIIIa49-66 capable of inducing oxidative platelet fragmentation in the absence of complement. HIV-1–seropositive drug abusers are more prone to develop immune thrombocytopenia than non–drug abusers and have a higher coinfection with hepatitis C virus (HCV) than non–drug abusers (90% vs 30%). Molecular mimicry was sought by screening a phage peptide library with anti–GPIIIa49-66 antibody as bait for peptides sharing homology sequences with HCV. Several phage peptide clones had 70% homology with HCV protein. Sera from dually infected thrombocytopenic patients with HCV and HIV-ITP reacted strongly with 4 nonconserved peptides from HCV core envelope 1. Reactivity correlated inversely with platelet count (r2 = 0.7, P < .01). Ab raised against peptide PHC09 in GPIIIa−/− mice induced thrombocytopenia in wild-type mice. Affinity-purified IgG against PHC09 induced oxidative platelet fragmentation in vitro. Drug abusers dually infected with HCV and HIV-1 had a greater incidence and severity of thrombocytopenia as well as titer of anti–GPIIIa49-66/PHC09 Ab. NZB/W F1 mice injected with recombinant core envelope 1 developed Ab versus PHC09 and significantly decreased their platelet count (P < .001). Thus, HCV core envelope 1 can induce thrombocytopenia by molecular mimicry with GPIIIa49-66
    corecore