47 research outputs found

    Expression of interleukin-17RC protein in normal human tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-17 (IL-17) cytokines and receptors play an important role in many autoimmune and inflammatory diseases. IL-17 receptors IL-17RA and IL-17RC have been found to form a heterodimer for mediating the signals of IL-17A and IL-17F cytokines. While the function and signaling pathway of IL-17RA has been revealed, IL-17RC has not been well characterized. The function and signaling pathway of IL-17RC remain largely unknown. The purpose of the present study was to systematically examine IL-17RC protein expression in 53 human tissues.</p> <p>Results</p> <p>IL-17RC expression in 51 normal human tissues and two benign tumors (i.e., lymphangioma and parathyroid adenoma) on the tissue microarrays was determined by immunohistochemical staining, using two polyclonal antibodies against IL-17RC. IL-17RC protein was expressed in many cell types including the myocardial cells, vascular and lymphatic endothelial cells, glandular cells (of the adrenal, parathyroid, pituitary, thyroid, pancreas, parotid salivary, and subepidermal glands), epithelial cells (of the esophagus, stomach, intestine, anus, renal tubule, breast, cervix, Fallopian tube, epididymis, seminal vesicle, prostate, gallbladder, bronchus, lung, and skin), oocytes in the ovary, Sertoli cells in the testis, motor neurons in the spinal cord, autonomic ganglia and nerves in the intestine, skeletal muscle cells, adipocytes, articular chondrocytes, and synovial cells. High levels of IL-17RC protein expression were observed in most vascular and lymphatic endothelium and squamous epithelium. The epithelium of the breast, cervix, Fallopian tube, kidney, bladder and bronchus also expressed high levels of IL-17RC, so did the glandular cells in the adrenal cortex, parotid salivary and subepidermal glands. In contrast, IL-17RC protein was not detectable in the smooth muscle cells, fibroblasts, antral mucosa of the stomach, mucosa of the colon, endometrium of the uterus, neurons of the brain, hepatocytes, or lymphocytes. Nevertheless, IL-17RC protein was expressed in the vascular endothelium within the tissues where the IL-17RC-negative cells resided.</p> <p>Conclusion</p> <p>IL-17RC protein is expressed in most human tissues, the function of which warrants further investigation.</p

    Hyaluronan Does Not Affect Bupivacaine's Inhibitory Action on Voltage-Gated Potassium Channel Activities in Bovine Articular Chondrocytes

    Get PDF
    Objectives. The objective of this paper is to determine if hyaluronan affects bupivacaine's anesthetic function. Methods. Whole cell patch clamp recordings were performed on bovine articular chondrocytes cultured in 60 mm dishes. The chondrocytes were treated with phosphate-buffered saline (control group), 7.5 mg/mL hyaluronan (Orthovisc), 0.25% bupivacaine, or a mixture of 7.5 mg/mL hyaluronan and 0.25% bupivacaine. Outward currents were elicited by step depolarization from −90 mV to 150 mV with 5 mV increments and holding for 200 ms. Results. The amplitude of outward currents elicited at 150 mV was 607.1 ± 135.4 pA (mean ± standard error) in the chondrocytes treated with phosphate buffered saline, 550.0 ± 194.9 pA in the chondrocytes treated with hyaluronan, 18.4 ± 8.3 pA in the chondrocytes treated with bupivacaine, and 12.8 ± 2.6 pA in the chondrocytes treated with a mixture of hyaluronan and bupivacaine. Conclusion. Hyaluronan does not affect bupivacaine's inhibitory action on the potassium channel activities in bovine articular chondrocytes. This finding suggests that intra-articular injection of a mixture of hyaluronan and bupivacaine may not affect the anesthetic effects of bupivacaine

    WNT-1 Signaling Inhibits Apoptosis by Activating β-Catenin/T Cell Factor–Mediated Transcription

    Get PDF
    Wnt signaling plays a critical role in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of Wnt signaling, little is known regarding Wnt signaling modification of the cell death machinery. Given that numerous oncogenes transform cells by providing cell survival function, we hypothesized that Wnt signaling may inhibit apoptosis. Here, we report that cells expressing Wnt-1 were resistant to cancer therapy–mediated apoptosis. Wnt-1 signaling inhibited the cytochrome c release and the subsequent caspase-9 activation induced by chemotherapeutic drugs, including both vincristine and vinblastine. Furthermore, we found that Wnt-1–mediated cell survival was dependent on the activation of β-catenin/T cell factor (Tcf) transcription. Inhibition of β-catenin/Tcf transcription by expression of the dominant-negative mutant of Tcf-4 blocked Wnt-1–mediated cell survival and rendered cells sensitive to apoptotic stimuli. These results provide the first demonstration that Wnt-1 inhibits cancer therapy–mediated apoptosis and suggests that Wnt-1 may exhibit its oncogenic potential through a mechanism of anti-apoptosis

    Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism

    Get PDF
    Lack of immune system cells or impairment in differentiation of immune cells is the basis for many chronic diseases. Metabolic changes could be the root cause for this immune cell impairment. These changes could be a result of altered transcription, cytokine production from surrounding cells, and changes in metabolic pathways. Immunity and mitochondria are interlinked with each other. An important feature of mitochondria is it can regulate activation, differentiation, and survival of immune cells. In addition, it can also release signals such as mitochondrial DNA (mtDNA) and mitochondrial ROS (mtROS) to regulate transcription of immune cells. From current literature, we found that mitochondria can regulate immunity in different ways. First, alterations in metabolic pathways (TCA cycle, oxidative phosphorylation, and FAO) and mitochondria induced transcriptional changes can lead to entirely different outcomes in immune cells. For example, M1 macrophages exhibit a broken TCA cycle and have a pro-inflammatory role. By contrast, M2 macrophages undergo β-oxidation to produce anti-inflammatory responses. In addition, amino acid metabolism, especially arginine, glutamine, serine, glycine, and tryptophan, is critical for T cell differentiation and macrophage polarization. Second, mitochondria can activate the inflammatory response. For instance, mitochondrial antiviral signaling and NLRP3 can be activated by mitochondria. Third, mitochondrial mass and mobility can be influenced by fission and fusion. Fission and fusion can influence immune functions. Finally, mitochondria are placed near the endoplasmic reticulum (ER) in immune cells. Therefore, mitochondria and ER junction signaling can also influence immune cell metabolism. Mitochondrial machinery such as metabolic pathways, amino acid metabolism, antioxidant systems, mitochondrial dynamics, mtDNA, mitophagy, and mtROS are crucial for immune functions. Here, we have demonstrated how mitochondria coordinate to alter immune responses and how changes in mitochondrial machinery contribute to alterations in immune responses. A better understanding of the molecular components of mitochondria is necessary. This can help in the development of safe and effective immune therapy or prevention of chronic diseases. In this review, we have presented an updated prospective of the mitochondrial machinery that drives various immune responses

    Wnt signaling promotes oncogenic transformation by inhibiting c-Myc–induced apoptosis

    Get PDF
    Aberrant activation of the Wnt/β-catenin signaling pathway is associated with numerous human cancers and often correlates with the overexpression or amplification of the c-myc oncogene. Paradoxical to the cellular transformation potential of c-Myc is its ability to also induce apoptosis. Using an inducible c-MycER expression system, we found that Wnt/β-catenin signaling suppressed apoptosis by inhibiting c-Myc–induced release of cytochrome c and caspase activation. Both cyclooxygenase 2 and WISP-1 were identified as effectors of the Wnt-mediated antiapoptotic signal. Soft agar assays showed that neither c-Myc nor Wnt-1 alone was sufficient to induce cellular transformation, but that Wnt and c-Myc coordinated in inducing transformation. Furthermore, coexpression of Wnt-1 and c-Myc induced high-frequency and rapid tumor growth in nude mice. Extensive apoptotic bodies were characteristic of c-Myc–induced tumors, but not tumors induced by coactivation of c-Myc and Wnt-1, indicating that the antiapoptotic function of Wnt-1 plays a critical role in the synergetic action between c-Myc and Wnt-1. These results elucidate the molecular mechanisms by which Wnt/β-catenin inhibits apoptosis and provide new insight into Wnt signaling-mediated oncogenesis

    Insulin and IGF1 enhance IL-17-induced chemokine expression through a GSK3B-dependent mechanism: a new target for melatonin\u27s anti-inflammatory action.

    Get PDF
    Obesity is a chronic inflammation with increased serum levels of insulin, insulin-like growth factor 1 (IGF1), and interleukin-17 (IL-17). The objective of this study was to test a hypothesis that insulin and IGF1 enhance IL-17-induced expression of inflammatory chemokines/cytokines through a glycogen synthase kinase 3β (GSK3B)-dependent mechanism, which can be inhibited by melatonin. We found that insulin/IGF1 and lithium chloride enhanced IL-17-induced expression of C-X-C motif ligand 1 (Cxcl1) and C-C motif ligand 20 (Ccl20) in the Gsk3b(+/+) , but not in Gsk3b(-/-) mouse embryonic fibroblast (MEF) cells. IL-17 induced higher levels of Cxcl1 and Ccl20 in the Gsk3b(-/-) MEF cells, compared with the Gsk3b(+/+) MEF cells. Insulin and IGF1 activated Akt to phosphorylate GSK3B at serine 9, thus inhibiting GSK3B activity. Melatonin inhibited Akt activation, thus decreasing P-GSK3B at serine 9 (i.e., increasing GSK3B activity) and subsequently inhibiting expression of Cxcl1 and Ccl20 that was induced either by IL-17 alone or by a combination of insulin and IL-17. Melatonin\u27s inhibitory effects were only observed in the Gsk3b(+/+) , but in not Gsk3b(-/-) MEF cells. Melatonin also inhibited expression of Cxcl1, Ccl20, and Il-6 that was induced by a combination of insulin and IL-17 in the mouse prostatic tissues. Further, nighttime human blood, which contained high physiologic levels of melatonin, decreased expression of Cxcl1, Ccl20, and Il-6 in the PC3 human prostate cancer xenograft tumors. Our data support our hypothesis and suggest that melatonin may be used to dampen IL-17-mediated inflammation that is enhanced by the increased levels of insulin and IGF1 in obesity

    Midkine is a NF-κB-inducible gene that supports prostate cancer cell survival

    Get PDF
    BackgroundMidkine is a heparin-binding growth factor that is over-expressed in various human cancers and plays important roles in cell transformation, growth, survival, migration, and angiogenesis. However, little is known about the upstream factors and signaling mechanisms that regulate midkine gene expression.MethodsTwo prostate cancer cell lines LNCaP and PC3 were studied for their expression of midkine. Induction of midkine expression in LNCaP cells by serum, growth factors and cytokines was determined by Western blot analysis and/or real-time quantitative reverse-transcription - polymerase chain reaction (RT-PCR). The cell viability was determined by the trypan blue exclusion assay when the LNCaP cells were treated with tumor necrosis factor alpha (TNFalpha) and/or recombinant midkine. When the LNCaP cells were treated with recombinant midkine, activation of intracellular signalling pathways was determined by Western blot analysis. Prostate tissue microarray slides containing 129 cases (18 normal prostate tissues, 40 early stage cancers, and 71 late stage cancers) were assessed for midkine expression by immunohistochemical staining.ResultsWe identified that fetal bovine serum, some growth factors (epidermal growth factor, androgen, insulin-like growth factor-I, and hepatocyte growth factor) and cytokines (TNFalpha and interleukin-1beta) induced midkine expression in a human prostate cancer cell line LNCaP cells. TNFalpha also induced midkine expression in PC3 cells. TNFalpha was the strongest inducer of midkine expression via nuclear factor-kappa B pathway. Midkine partially inhibited TNFalpha-induced apoptosis in LNCaP cells. Knockdown of endogenous midkine expression by small interfering RNA enhanced TNFalpha-induced apoptosis in LNCaP cells. Midkine activated extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in LNCaP cells. Furthermore, midkine expression was significantly increased in late stage prostate cancer, which coincides with previously reported high serum levels of TNFalpha in advanced prostate cancer.ConclusionThese findings provide the first demonstration that midkine expression is induced by certain growth factors and cytokines, particularly TNFalpha, which offers new insight into understanding how midkine expression is increased in the late stage prostate cancer

    The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time.</p> <p>Methods</p> <p>Ninety-nine patients with non-small cell lung cancer (NSCLC) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical staining for CD68 (marker for macrophages), CD83 (marker for mature dendritic cells), and CD8 (marker for cytotoxic T cells) was performed and evaluated in a blinded fashion. The numbers of immune cells in tumor islets and stroma, tumor islets, or tumor stroma were counted under a microscope. Correlation of the cell numbers and patient's survival time was analyzed using the Statistical Package for the Social Sciences (version 13.0).</p> <p>Results</p> <p>The numbers of macrophages, mature dendritic cells and cytotoxic T cells were significantly more in the tumor stroma than in the tumor islets. The number of macrophages in the tumor islets was positively associated with patient's survival time, whereas the number of macrophages in the tumor stroma was negatively associated with patient's survival time in both univariate and multivariate analyses. The number of mature dendritic cells in the tumor islets and stroma, tumor islets only, or tumor stroma only was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets and stroma was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets only or stroma only was not associated with patient's survival time.</p> <p>Conclusions</p> <p>The number of macrophages in the tumor islets or stroma is an independent predictor of survival time in NSCLC patients. Counting macrophages in the tumor islets or stroma is more useful in predicting patient's survival time than counting mature dendritic cells or cytotoxic T cells.</p

    In vitro and in vivo model systems used in prostate cancer research

    No full text
    New incidence of prostate cancer is a major public health issue in the Western world, and has been rising in other areas of the globe in recent years. In an effort to understanding the molecular pathogenesis of this disease, numerous cell models have been developed, arising mostly from patient biopsies. The introduction of the genetically engineered mouse in biomedical research has allowed the development of murine models that allow for the investigation of tumorigenic and metastatic processes. Current challenges to the field include lack of an animal model that faithfully recapitulates bone metastasis of prostate cancer
    corecore