4,152 research outputs found
Comparative genome analysis identifies few traits unique to the Escherichia coli ST131 H30Rx clade and extensive mosaicism at the capsule locus
Background: E.coli ST131 is a globally disseminated clone of multi-drug resistant E. coli responsible for that vast majority of global extra-intestinal E. coli infections. Recent global genomic epidemiological studies have highlighted the highly clonal nature of this group of bacteria, however there appears to be inconsistency in some phenotypes associated with the clone, in particular capsule types as determined by K-antigen testing both biochemically and by PCR. Results: We performed improved quality assemblies on ten ST131 genomes previously sequenced by our group and compared them to a new reference genome sequence JJ1886 to identify the capsule loci across the drug-resistant clone H30Rx. Our data shows considerable genetic diversity within the capsule locus of H30Rx clone strains which is mirrored by classical K antigen testing. The varying capsule locus types appear to be randomly distributed across the H30Rx phylogeny suggesting multiple recombination events at this locus, but that this capsule heterogeneity has little to no effect on virulence associated phenotypes in vitro. Conclusions: Our data provides a framework for determining the capsular genetics of E. coli ST131 and further beyond to ExPEC strains, and highlights how capsular mosaicism may be an important strategy in becoming a successful globally disseminated human pathogen
Design of Compact BPF and Planar Diplexer for UMTS using Embedded-scheme Resonator
A compact planar diplexer utilizing embedded-scheme resonator (ESR) is designed for universal mobile telecommunications system (UMTS). The ESR is formed by embedding interdigital resonators into an open loop resonator. Based on the proposed ESR, a narrowband bandpass filter suitable for diplexer design is proposed, fabricated and measured. The measured results demonstrate that the filter exhibits good transmission properties within band and high frequency selectivity. The rectangular area occupied by the filter has overall dimensions only 0.086λg by 0.105λg, promises good potential in wireless communication systems that require compact size and high encapsulation quality. Then, a compact planar diplexer operating at the TX-band of 1920-1980MHz and the RX-band of 2110-2170MHz, which is composed of a meander T-junction and two filters initially separately designed, is synthesized, simulated and measured. Both the simulated and measured results indicate that satisfied impedance matching and good isolation between two paths have been achieved
Compact and High Performance Dual-band Bandpass Filter Using Resonator-embedded Scheme for WLANs
A compact microstrip dual-band bandpass filter (DBBPF) with high selectivity and good suppression for wireless local area networks (WLANs) is proposed utilizing a novel embedded scheme resonator. Two passbands are produced by a pair of embedded half-wavelength meandered stepped-impedance resonator (MSIR) and a quadwavelength short stub loaded stepped-impedance resonator (SIR) separately. The resonator is fed by folded Tshaped capacitive source-load coupling microstrip feed line, and four transmission zeros are obtained at both sides of the bands to improve selectivity and suppression. Simultaneously, the size of the filter is extermely compact because embedding half-wavelength MSIR only changes the interior configuration of quad-wavelength SIR. To validate the design method, the designed filter is fabricated and measured. Both simulated and measured results indicate that good transmission property has been achieved
Variational calculations on the hydrogen molecular ion
We present high-precision non-relativistic variational calculations of bound
vibrational-rotational state energies for the and molecular
ions in each of the lowest electronic states of , , and
symmetry. The calculations are carried out including coupling between
and states but without using the Born-Oppenheimer or any
adiabatic approximation. Convergence studies are presented which indicate that
the resulting energies for low-lying levels are accurate to about .
Our procedure accounts naturally for the lambda-doubling of the state.Comment: 23 pp., RevTeX, epsf.sty, 5 figs. Enhanced data in Table II, dropped
3 figs. from previous versio
- …