4 research outputs found

    A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols

    No full text
    Calcium- and magnesium-containing salts are important components for mineral dust and sea salt aerosols, but their physicochemical properties are not well understood yet. In this study, hygroscopic properties of eight Ca- and Mg-containing salts, including Ca(NO3)(2)center dot 4H(2)O, Mg(NO3)(2)center dot 6H(2)O, MgCl2 center dot 6H(2)O, CaCl2 center dot 6H(2)O, Ca(HCOO)(2), Mg(HCOO)(2)center dot 2H(2)O, Ca(CH3COO)(2)center dot H2O and Mg(CH3COO)(2)center dot 4H(2)O, were investigated using two complementary techniques. A vapor sorption analyzer was used to measure the change of sample mass with relative humidity ( RH) under isotherm conditions, and the deliquescence relative humidities ( DRHs) for temperature in the range of 5-30 degrees C as well as water-to-solute ratios as a function of RH at 5 and 25 degrees C were reported for these eight compounds. DRH values showed large variation for these compounds; for example, at 25 degrees C DRHs were measured to be similar to 28.5% for CaCl2 center dot 6H(2)O and > 95% for Ca(HCOO)(2) and Mg(HCOO)(2)center dot 2H(2)O. We further found that the dependence of DRH on temperature can be approximated by the Clausius-Clapeyron equation. In addition, a humidity tandem differential mobility analyzer was used to measure the change in mobility diameter with RH (up to 90 %) at room temperature, in order to determine hygroscopic growth factors of aerosol particles generated by atomizing water solutions of these eight compounds. All the aerosol particles studied in this work, very likely to be amorphous under dry conditions, started to grow at very low RH (as low as 10 %) and showed continuous growth with RH. Hygroscopic growth factors at 90% RH were found to range from 1.26 +/- 0.04 for Ca(HCOO)(2) to 1.79 +/- 0.03 for Ca(NO3)(2), and the single hygroscopicity parameter ranged from 0.09-0.13 for Ca(CH3COO)(2) to 0.49-0.56 for Ca(NO3)(2). Overall, our work provides a comprehensive investigation of hygroscopic properties of these Ca- and Mg-containing salts, largely improving our knowledge of the physicochemical properties of mineral dust and sea salt aerosols

    Resolving Ultraviolet–Visible Spectra for Complex Dissolved Mixtures of Multitudinous Organic Matters in Aerosols

    No full text
    Light-absorbing organic aerosols, referred to as brown carbon (BrC), play a vital role in the global climate and air quality. Due to the complexity of BrC chromophores, the identified absorbing substances in the ambient atmosphere are very limited. However, without comprehensive knowledge of the complex absorbing compounds in BrC, our understanding of its sources, formation, and evolution mechanisms remains superficial, leading to great uncertainty in climatic and atmospheric models. To address this gap, we developed a constrained non-negative matrix factorization (NMF) model to resolve the individual ultraviolet–visible spectrum for each substance in dissolved organic aerosols, with the power of ultrahigh-performance liquid chromatography-diode array detector-ultrahigh-resolution mass spectrometry (UHPLC-DAD-UHRMS). The resolved spectra were validated by selected standard substances and validation samples. Approximately 40,000 light-absorbing substances were recognized at the MS1 level. It turns out that BrC is composed of a vast number of substances rather than a few prominent chromophores in the urban atmosphere. Previous understanding of the absorbing feature of BrC based on a few identified compounds could be biased. Weak-absorbing substances missed previously play an important role in BrC absorption when they are integrated due to their overwhelming number. This model brings the property exploration of complex dissolved organic mixtures to a molecular level, laying a foundation for identifying potentially significant compositions and obtaining a comprehensive chemical picture
    corecore