26 research outputs found

    ЦСновая стратСгия устойчивого развития прСдприятий Π·Π΅Ρ€Π½ΠΎΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ²ΠΎΠ³ΠΎ подкомплСкса

    Get PDF
    ЦСль. ΠžΠ±ΠΎΡΠ½ΠΎΠ²Π°Ρ‚ΡŒ Ρ†Π΅Π½ΠΎΠ²ΡƒΡŽ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡŽ овладСния устойчивым ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ прСдприятий зСрнопродуктовогоподкомплСкса Π½Π° Ρ€Ρ‹Π½ΠΊΠ΅ Π·Π΅Ρ€Π½Π°, ΠΌΡƒΠΊΠΈ, ΠΊΡ€ΡƒΠΏ ΠΈ Ρ…Π»Π΅Π±ΠΎΠ±ΡƒΠ»ΠΎΡ‡Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ

    A Computational Framework for Heparan Sulfate Sequencing Using High-resolution Tandem Mass Spectra

    Get PDF
    Heparan sulfate (HS) is a linear polysaccharide expressed on cell surfaces, in extracellular matrices and cellular granules in metazoan cells. Through non-covalent binding to growth factors, morphogens, chemokines, and other protein families, HS is involved in all multicellular physiological activities. Its biological activities depend on the fine structures of its protein-binding domains, the determination of which remains a daunting task. Methods have advanced to the point that mass spectra with information-rich product ions may be produced on purified HS saccharides. However, the interpretation of these complex product ion patterns has emerged as the bottleneck to the dissemination of these HS sequencing methods. To solve this problem, we designed HS-SEQ, the first comprehensive algorithm for HS de novo sequencing using high-resolution tandem mass spectra. We tested HS-SEQ using negative electron transfer dissociation (NETD) tandem mass spectra generated from a set of pure synthetic saccharide standards with diverse sulfation patterns. The results showed that HS-SEQ rapidly and accurately determined the correct HS structures from large candidate pools

    Single Stage Tandem Mass Spectrometry Assignment of the C-5 Uronic Acid Stereochemistry in Heparan Sulfate Tetrasaccharides using Electron Detachment Dissociation

    No full text
    The analysis of heparan sulfate (HS) glycosaminoglycans presents many challenges, due to the high degree of structural heterogeneity arising from their non-template biosynthesis. Complete structural elucidation of glycosaminoglycans necessitates the unambiguous assignments of sulfo modifications and the C-5 uronic acid stereochemistry. Efforts to develop tandem mass spectrometric-based methods for the structural analysis of glycosaminoglycans have focused on the assignment of sulfo positions. The present work focuses on the assignment of the C-5 stereochemistry of the uronic acid that lies closest to the reducing end. Prior work with electron-based tandem mass spectrometry methods, specifically electron detachment dissociation (EDD), have shown great promise in providing stereo-specific product ions, such as the B3(Β΄) -CO2, which has been found to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) in some HS tetrasaccharides. The previously observed diagnostic ions are generally not observed with 2-O-sulfo uronic acids or for more highly sulfated heparan sulfate tetrasaccharides. A recent study using electron detachment dissociation and principal component analysis revealed a series of ions that correlate with GlcA versus IdoA for a set of 2-O-sulfo HS tetrasaccharide standards. The present work comprehensively investigates the efficacy of these ions for assigning the C-5 stereochemistry of the reducing end uronic acid in 33 HS tetrasaccharides. A diagnostic ratio can be computed from the sum of the ions that correlate to GlcA to those that correlate to IdoA. Graphical Abstract α…Ÿ

    Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    No full text
    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases mentioned above. By contrast, multiple distinct isoforms of 3-O-sulfotranserases exist in mammals (up to seven isoenzymes). Here we describe a novel peeling reaction that specifically degrades HS chains with 3-O-sulfated glucosamine at the reducing-end. When HS/heparin is enzymatically depolymerized for compositional analysis, 3-O-sulfated glucosamine at the reducing ends appears to be susceptible to degradation under mildly basic conditions. We propose a 3-O-desulfation initiated peeling reaction mechanism based on the intermediate and side-reaction products observed. Our discovery calls for the re-evaluation of the natural abundance and functions of HS 3-O-sulfation by taking into consideration the negative impact of this novel peeling reaction

    Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    No full text
    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases mentioned above. By contrast, multiple distinct isoforms of 3-O-sulfotranserases exist in mammals (up to seven isoenzymes). Here we describe a novel peeling reaction that specifically degrades HS chains with 3-O-sulfated glucosamine at the reducing-end. When HS/heparin is enzymatically depolymerized for compositional analysis, 3-O-sulfated glucosamine at the reducing ends appears to be susceptible to degradation under mildly basic conditions. We propose a 3-O-desulfation initiated peeling reaction mechanism based on the intermediate and side-reaction products observed. Our discovery calls for the re-evaluation of the natural abundance and functions of HS 3-O-sulfation by taking into consideration the negative impact of this novel peeling reaction

    Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative

    No full text
    Cell-surface engineering strategies that permit long-lived display of well-defined, functionally active molecules are highly attractive for eliciting desired cellular responses and for understanding biological processes. Current methodologies for the exogenous introduction of synthetic biomolecules often result in short-lived presentations, or require genetic manipulation to facilitate membrane attachment. Herein, we report a cell-surface engineering strategy that is based on the use of a CMP-Neu5Ac derivative that is modified at C-5 by a bifunctional entity composed of a complex synthetic heparan sulfate (HS) oligosaccharide and biotin. It is shown that recombinant ST6GAL1 can readily transfer the modified sialic acid to N-glycans of glycoprotein acceptors of living cells resulting in long-lived display. The HS oligosaccharide is functionally active, can restore protein binding, and allows activation of cell signaling events of HS-deficient cells. The cell-surface engineering methodology can easily be adapted to any cell type and is highly amenable to a wide range of complex biomolecules

    Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative

    No full text
    Cell-surface engineering strategies that permit long-lived display of well-defined, functionally active molecules are highly attractive for eliciting desired cellular responses and for understanding biological processes. Current methodologies for the exogenous introduction of synthetic biomolecules often result in short-lived presentations, or require genetic manipulation to facilitate membrane attachment. Herein, we report a cell-surface engineering strategy that is based on the use of a CMP-Neu5Ac derivative that is modified at C-5 by a bifunctional entity composed of a complex synthetic heparan sulfate (HS) oligosaccharide and biotin. It is shown that recombinant ST6GAL1 can readily transfer the modified sialic acid to N-glycans of glycoprotein acceptors of living cells resulting in long-lived display. The HS oligosaccharide is functionally active, can restore protein binding, and allows activation of cell signaling events of HS-deficient cells. The cell-surface engineering methodology can easily be adapted to any cell type and is highly amenable to a wide range of complex biomolecules

    De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides

    No full text
    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates

    Self-Assembled TLR7/8 Agonist-Mannose Conjugate as An Effective Vaccine Adjuvant for SARS-CoV-2 RBD Trimer

    No full text
    Small synthetic TLR7/8-agonists can be used as vaccine adjuvants to enhance cell and humoral-mediated immune responses to specific antigens. Despite their potency, after local injection they can be dispersed to undesired body parts causing high reactogenicity, limiting their clinical applications. Here we describe a vaccination strategy that employs the covalent conjugate of a mannose and TLR7/8 agonist as a vaccine adjuvant to take advantage of mannose binding C-type lectins on dendritic cells to enhance the vaccine’s immunogenicity. The mannose-TLR7/8 agonist conjugate can self-assemble into nanoparticles with the hydrophilic mannose on the outside and hydrophobic TLR7/8 agonist inside. Although its ability to stimulate HEK-BlueTM hTLR7/8 cells dropped, it can efficiently stimulate mouse bone marrow-derived dendritic cells as indicated by the up-regulation of CD80 and CD86, and higher cytokine expression levels of TNF-α, IL6, and IL-12p70 than the native TLR7/8 agonist. In vivo, vaccination using the SARS-CoV-2 RBD trimer as the antigen and the conjugate as the adjuvant induced a significantly higher amount of IgG2a. These results suggest that the mannose-TLR7/8-agonist conjugate can be used as an effective vaccine adjuvant
    corecore