50 research outputs found

    Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis

    Get PDF
    Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development

    Hydroxytriazole derivatives as potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors discovered by bioisosteric scaffold hopping approach

    Get PDF
    YesThe aldo-keto reductase 1C3 isoform (AKR1C3) plays a vital role in the biosynthesis of androgens, making this enzyme an attractive target for castration-resistant prostate cancer therapy. Although AKR1C3 is a promising drug target, no AKR1C3-targeted agent has to date been approved for clinical use. Flufenamic acid, a non-steroidal anti-inflammatory drug, is known to potently inhibit AKR1C3 in a non-selective manner as COX off-target effects are also observed. To diminish off-target effects, we have applied a scaffold hopping strategy replacing the benzoic acid moiety of flufenamic acid with an acidic hydroxyazolecarbonylic scaffold. In particular, differently N-substituted hydroxylated triazoles were designed to simultaneously interact with both subpockets 1 and 2 in the active site of AKR1C3, larger for AKR1C3 than other AKR1Cs isoforms. Through computational design and iterative rounds of synthesis and biological evaluation, novel compounds are reported, sharing high selectivity (up to 230-fold) for AKR1C3 over 1C2 isoform and minimal COX1 and COX2 off-target inhibition. A docking study of compound 8, the most interesting compound of the series, suggested that its methoxybenzyl substitution has the ability to fit inside subpocket 2, being involved in π-π staking interaction with Trp227 (partial overlapping) and in a T-shape π-π staking with Trp86. This compound was also shown to diminish testosterone production in the AKR1C3-expressing 22RV1 prostate cancer cell line while synergistic effect was observed when 8 was administered in combination with abiraterone or enzalutamide.University of Turin (Ricerca Locale grant 2014 and 2015) and Prostate Cancer UK grant S12-02

    Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a bioisosteric scaffold hopping approach to flufenamic acid

    Get PDF
    YesThe aldo-keto reductase 1C3 (AKR1C3) isoform plays a vital role in the biosynthesis of androgens and is considered an attractive target in prostate cancer (PCa). No AKR1C3-targeted agent has to date been approved for clinical use. Flufenamic acid and indomethacine are non-steroidal anti-inflammatory drugs known to inhibit AKR1C3 in a non-selective manner as COX off-target effects are also observed. Recently, we employed a scaffold hopping approach to design a new class of potent and selective AKR1C3 inhibitors based on a N-substituted hydroxylated triazole pharmacophore. Following a similar strategy, we designed a new series focused around an acidic hydroxybenzoisoxazole moiety, which was rationalised to mimic the benzoic acid role in the flufenamic scaffold. Through iterative rounds of drug design, synthesis and biological evaluation, several compounds were discovered to target AKR1C3 in a selective manner. The most promising compound of series (6) was found to be highly selective (up to 450-fold) for AKR1C3 over the 1C2 isoform with minimal COX1 and COX2 off-target effects. Other inhibitors were obtained modulating the best example of hydroxylated triazoles we previously presented. In cell-based assays, the most promising compounds of both series reduced the cell proliferation, prostate specific antigen (PSA) and testosterone production in AKR1C3-expressing 22RV1 prostate cancer cells and showed synergistic effect when assayed in combination with abiraterone and enzalutamide. Structure determination of AKR1C3 co-crystallized with one representative compound from each of the two series clearly identified both compounds in the androstenedione binding site, hence supporting the biochemical data.University of Turin (Ricerca Locale grant 2015-2017) and Prostate Cancer UK grant S12-027

    Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh

    Get PDF
    Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues

    Targeting microRNAs as key modulators of tumor immune response

    Full text link

    Cranial injuries on a skull from the Ancient Bronze Age (Ballabio, LC, Italy): a natural or an anthropic origin?

    No full text
    This paper illustrates the results of analyses carried out on a skull coming from the ancient Bronze Age burial site of Ballabio (LC), Northern Italy, (3230 ± 90 B.P.). It is a mixed funerary context, characterized by two primary graves in which corpses were buried for a certain time before being exhumed and laid to rest in collective secondary graves. One specimen belongs to a 17-20 years old female. The skull shows several interesting anomalies: metopism, an area of 5 cm of periostitis located in the middle of the frontal bone, marked vascular sulci at both frontal sides, linear marks that intersect and cover the frontal bone and the parietals. The analyses were carried out in order to try to establish the connection between the identified scraping marks and the periostitis on the frontal bone as well as the moment in which they were realized (ante-, peri- or post-mortem)

    Cranial injuries on a skull from the Ancient Bronze Age (Ballabio, LC, Italy): a natural or an anthropic origin?

    No full text
    This paper discusses the results of the analysis carried out on a female skull coming from a collective burial, dated to the Ancient Bronze Age in Italy (Ballabio, LC), showing clear evidence of human intentional intervention. The skull shows some series of scraping marks on the external cranial vault, crossing longitudinally the parietal bones. The contemporaneous presence of periostitis on the frontal bone and the provenance of the finding from a secondary burial context (a typical funerary habit documented in Italy during the Copper Age and Ancient Bronze Age) makes the case difficult to be interpreted (scalping? surgery? scarification? ritual practice linked to secondary deposition?). The analysis, carried out on the skull surface (stereomicroscopy observation, scanning electron microscopy analysis, 3D virtual reconstruction), were aimed to discriminate intentional marks from modifications due to taphonomical processes and to state the moment of their formation (peri- or post-mortem). In this paper we discuss the possibility that scraping marks are connected to a ritual practice, either held by the individual during life with specific symbolic or social value, or which had taken place after death or at the moment of secondary burial

    A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts

    No full text
    In addition to its role in invasion and metastasis of several tumors, the multifunctional urokinase receptor uPAR (urokinase plasminogen activator receptor) is directly involved in the growth of several cancer cells in vitro and in vivo. We have compared growth rate and oncogenic transformation in wild-type (wt) or uPAR-/- mouse embryonic fibroblasts (MEFs). Surprisingly, uPAR-/- MEFs grew faster than wt MEFs. This agreed with elevated levels of cell cycle mediators like extracellular signal-regulated protein kinase, p38, AP1 and Cyclin D1. Infection with a uPAR retrovirus reverted the effect, decreasing the growth rate.When MEFs were transformed with H-RasV12 and E1A oncogenes, the efficiency of transformation in uPAR-/- MEFs was higher than in wt. UPAR-/- MEFs grew faster at low serum, produced more colonies in agar and produced tumors in vivo in nude mice with a lower latency period. The properties of the heterozygous uPAR+/- MEFs were always intermediate. We conclude therefore that in MEFs uPAR concentration controls cell proliferation and the transforming activity of some oncogenes

    Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies

    Get PDF
    The flavonoid quercetin is extensively studied for its antioxidant and chemopreventive properties. However the poor water-solubility, low stability and short half-life could restrict its use in skin care products and therapy. The present study is aimed to evaluate the potential of aminopropyl functionalized mesoporous silica nanoparticles (NH2-MSN) as topical carrier system for quercetin delivery. Thermo gravimetric analysis, X-ray diffraction, high resolution transmission electron microscopy, nitrogen adsorption isotherms, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry allowed to analyze with great detail the organic-inorganic molecular interaction. The protective effect of this vehicle on UV-induced degradation of the flavonoid was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex-vivo evaluated using porcine skin mounted on Franz diffusion cells. The inclusion complexation with the inorganic nanoparticles increased the penetration of quercetin into the skin after 24 h post-application without transdermal delivery. The effect of quercetin alone or given as complex with NH2-MSN on proliferation of JR8 human melanoma cells was evaluated by sulforhodamine B colorimetric proliferation assay. At a concentration 60 uM the complex with NH2-MSN was more effective than quercetin alone, causing a 50% inhibition of cell proliferation
    corecore