9 research outputs found

    Additive Manufacturing of 17-4PH Alloy: Tailoring the Printing Orientation for Enhanced Aerospace Application Performance

    Get PDF
    Additive manufacturing (AM) is one of the fastest-growing markets of our time. During its journey in the past 30 years, its key to success has been that it can easily produce extremely complex shapes and is not limited by tooling problems when a change in geometry is desired. This flexibility leads to possible solutions for creating lightweight structural elements while keeping the mechanical properties at a stable reserve factor value. In the aerospace industry, several kinds of structural elements for fuselage and wing parts are made from different kinds of steel alloys, such as 17-4PH stainless steel, which are usually milled from a block material made using conventional processing (CP) methods. However, these approaches are limited when a relatively small element must withstand greater forces that can occur during flight. AM can bridge this problem with a new perspective, mainly using thin walls and complex shapes while maintaining the ideal sizes. The downside of the elements made using AM is that the quality of the final product is highly dependent on the build/printing orientation, an issue extensively studied and addressed by researchers in the field. During flight, some components may experience forces that predominantly act in a single direction. With this in mind, we created samples with the desired orientation to maximize material properties in a specific direction. The goal of this study was to demonstrate that an additively manufactured part, produced using laser powder bed fusion (LPBF), with a desired build orientation has exceptional properties compared to parts produced via conventional methods. To assess the impact of the build orientation on the LPBF parts’ properties, one-dimensional tensile and dynamic fracture toughness tests were deployed

    Microstructure characterization of SiCp-reinforced aluminum matrix composites by newly developed computer-based algorithms

    No full text
    This paper presents a new approach for analyzing the microstructure of SiCp-reinforced aluminum matrix composites from digital images. Various samples of aluminum matrix composite were fabricated by hot pressing the powder mixtures with certain volume and size combinations of pure At and SiC particles. Microstructures of the samples were analyzed by computer-based image processing methods. Since the conventional methods are not suitable for separating phases of such complex microstructures, some new algorithms have been developed for the improved recognition of the particles in the metal matrix composites. One of the most determining attribute of composites structure is anisotropy, but the measurement of this parameter is very difficult and slow. For this reason, the anisotropy of metal matrix composites was investigated by the newly developed algorithm which has an optimized speed

    INVESTIGATION OF THE MICROSTRUCTURE AND HARDNESS OF SiCP REINFORCED ALUMINUM MATRIX COMPOSITES

    No full text
    The purpose of this study is to find a relationship between the parameters describing the microstructural homogeneity of SiC particle reinforced Al metal matrix composites. The Al-SiC powder mixtures having different particle size combinations were hot-pressed after careful mixing. The optical microscope images of the microstructures were processed by using an image analyzing program; the binary morphology was chosen for characterizing the SiC particle distribution

    Investigation of microstructure inhomogeneity in SiCp-reinforced aluminum matrix composites

    No full text
    The type, volume fraction, size, shape and arrangement of embedded particles influence the mechanical properties of the particle reinforced metal matrix composites. This presents the investigation of the SiC particle and porosity distributions in various aluminum matrix composites produced by cold- and hot-pressing. The inicrostructures were characterized by optical microscopy and stereological parameters. SiC and porosity volume fractions, and the anisotropy distribution function were measured to establish the influence of the consolidation method. The results showed that SiC particles are arranged in a different way during the cold- and hot pressing. The amount of porosity in the hot pressed specimens is always lower than that in the cold pressed ones; however, cold pressed and sintered samples have few large pores whereas more fine pores develop in the hot pressed ones. In the cold pressed specimens, heating rate for sintering influences the final density, the amount of porosity increases parallel to the increase in the relative particle size; and coating of SiC particles with Cu lowers the porosity while Ni-coating does not result in such an effect

    A Novel Process to Produce Ti Parts from Powder Metallurgy with Advanced Properties for Aeronautical Applications

    No full text
    Titanium and its alloys have excellent corrosion resistance, heat, and fatigue tolerance, and their strength-to-weight ratio is one of the highest among metals. This combination of properties makes them ideal for aerospace applications; however, high manufacturing costs hinder their widespread use compared to other metals such as aluminum alloys and steels. Powder metallurgy (PM) is a greener and more cost and energy-efficient method for the production of near-net-shape parts compared to traditional ingot metallurgy, especially for titanium parts. In addition, it allows us to synthesize special microstructures, which result in outstanding mechanical properties without the need for alloying elements. The most commonly used Ti alloy is the Ti6Al4V grade 5. This workhorse alloy ensures outstanding mechanical properties, demonstrating a strength which is at least twice that of commercially pure titanium (CP-Ti) grade 2 and comparable to the strength of hardened stainless steels. In the present research, different mixtures of both milled and unmilled Cp-Ti grade 2 powder were utilized using the PM method, aiming to synthesize samples with high mechanical properties comparable to those of high-strength alloys such as Ti6Al4V. The results showed that the fine nanoparticles significantly enhanced the strength of the material, while in several cases the material exceeded the values of the Ti6Al4V alloy. The produced sample exhibited a maximum compressive yield strength (1492 MPa), contained 10 wt.% of fine (milled) particles (average particle size: 3 μm) and was sintered at 900 °C for one hour
    corecore