147 research outputs found

    Search for d^* Dibaryon by Double-radiative Capture on Pionic Deuterium

    Get PDF
    We report a search for d^* dibaryon production by double-radiative capture on pionic deuterium. The experiment was conducted at the TRIUMF cyclotron using the RMC cylindrical pair spectrometer, and detected gamma-ray coincidences following pion stops in liquid deuterium. We found no evidence for narrow dibaryons, and obtained a branching ratio upper limit, BR < 6.7 times 10^{-6} (90% C.L.), for narrow d^* production in the mass range from 1920 to 1980 MeV. Replaced with Physics Letter B accepted version and corrected normalization.Comment: 9 pages, 4 figure

    Faddeev calculations of break-up reactions with realistic experimental constraints

    Full text link
    We present a method to integrate predictions from a theoretical model of a reaction with three bodies in the final state over the region of phase space covered by a given experiment. The method takes into account the true experimental acceptance, as well as variations of detector efficiency, and eliminates the need for a Monte-Carlo simulation of the detector setup. The method is applicable to kinematically complete experiments. Examples for the use of this method include several polarization observables in dp break-up at 270 MeV. The calculations are carried out in the Faddeev framework with the CD Bonn nucleon-nucleon interaction, with or without the inclusion of an additional three-nucleon force.Comment: 18 pages, 9 figure

    Ortho-para transition rate in μ\mu-molecular hydrogen and the proton's induced pseudoscalar coupling gpg_p

    Full text link
    We report a measurement of the ortho-para transition rate in the pμ\mup molecule. The experiment was conducted at TRIUMF via the measurement of the time dependence of the 5.2 MeV neutrons from muon capture in liquid hydrogen. The measurement yielded an ortho-para rate Λop=(11.1±1.7±0.60.9)×104\Lambda_{op} = (11.1 \pm 1.7 \pm^{0.9}_{0.6}) \times 10^4 s1^{-1} that is substantially larger than the earlier result of Bardin {\it et al.} We discuss the striking implications for the proton's induced pseudoscalar coupling gpg_p.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Isoscalar short-range current in the deuteron induced by an intermediate dibaryon

    Get PDF
    A new model for short-range isoscalar currents in the deuteron and in the NN system is developed; it is based on the generation of an intermediate dibaryon which is the basic ingredient for the medium- and short-range NN interaction which was proposed recently by the present authors.This new current model can very well describe the experimental data for the three basic deuteron observables of isoscalar magnetic type, viz. the magnetic moment, the circular polarization of the photon in the npdγnp\to d\gamma process at thermal neutron energies and the structure function B up to Q2^2=60 fm2^{-2}.Comment: LaTex, 22 pages with 8 figure

    Experimental search for evidence of the three-nucleon force and a new analysis method

    Full text link
    A research program with the aim of investigating the spin dependence of the three-nucleon continuum in pd collisions at intermediate energies was carried out at IUCF using the Polarized INternal Target EXperiments (PINTEX) facility. In the elastic scattering experiment at 135 and 200 MeV proton beam energies a total of 15 independent spin observables were obtained. The breakup experiment was done with a vector and tensor polarized deuteron beam of 270 MeV and an internal polarized hydrogen gas target. We developed a novel technique for the analysis of the breakup observables, the sampling method. The new approach takes into account acceptance and non-uniformities of detection efficiencies and is suitable for any kinematically complete experiment with three particles in the final state.Comment: Contribution to the 19th European Few-Body Conference, Groningen Aug. 23-27, 200

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    Meson Production in p+d Reactions

    Full text link
    The production of neutral and charged pions as well as eta mesons is studied in the Delta and N* resonance region, respectively. Heavy A=3 recoils were measured with the GEM detector. The differential cross sections covering the full angular range are compared with model calculations.Comment: 4 pages, latex, 4 figures, talk presented at the XVIIth European Conference on Few-Body Problems in Physics, Evora, Portugal, September 2000; to be published in Nucl. Phys.

    Forward K+ production in subthreshold pA collisions at 1.0 GeV

    Get PDF
    K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.Comment: 4 pages, 3 figure

    Search for NN-decoupled dibaryons using the process ppγγXpp \to \gamma \gamma X below the pion production threshold

    Full text link
    The energy spectrum for high energy γ\gamma-rays (Eγ10E_\gamma \geq 10 MeV) from the process ppγγXpp \to \gamma \gamma X emitted at 90090^0 in the laboratory frame has been measured at an energy below the pion production threshold, namely, at 216 MeV. The resulting photon energy spectrum extracted from γγ\gamma-\gamma coincidence events consists of a narrow peak at a photon energy of about 24 MeV and a relatively broad peak in the energy range of (50 - 70) MeV. The statistical significances for the narrow and broad peaks are 5.3σ\sigma and 3.5σ\sigma, respectively. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d1d^\star_1 with a mass of about 1956 MeV which is assumed to be formed in the radiative process ppγd1pp \to \gamma d^\star_1 followed by its electromagnetic decay via the d1ppγd^\star_1 \to pp \gamma mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations.Comment: 14 pages, LaTex, 6 eps-figures, accepted for publication in Phys.Rev.

    Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target

    Full text link
    We have measured the spin structure functions g1g_1 and g2g_2 of 3^3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.07 GeV off a polarized 3^3He target at a 15.5^{\circ} scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2Q^2 evolution of Γ1(Q2)=01g1(x,Q2)dx\Gamma_1(Q^2)=\int_0^{1} g_1(x,Q^2) dx, Γ2(Q2)=01g2(x,Q2)dx\Gamma_2(Q^2)=\int_0^1 g_2(x,Q^2) dx and d2(Q2)=01x2[2g1(x,Q2)+3g2(x,Q2)]dxd_2 (Q^2) = \int_0^1 x^2[ 2g_1(x,Q^2) + 3g_2(x,Q^2)] dx for the neutron in the range 0.1 GeV2^2 Q2\leq Q^2 \leq 0.9 GeV2^2 with good precision. Γ1(Q2) \Gamma_1(Q^2) displays a smooth variation from high to low Q2Q^2. The Burkhardt-Cottingham sum rule holds within uncertainties and d2d_2 is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes data in Fig. 2 (top panel) and their corresponding reference. Updated the low x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT calculation
    corecore