1,512 research outputs found

    Topological Wilson-loop area law manifested using a superposition of loops

    Full text link
    We introduce a new topological effect involving interference of two meson loops, manifesting a path-independent topological area dependence. The effect also draws a connection between quark confinement, Wilson-loops and topological interference effects. Although this is only a gedanken experiment in the context of particle physics, such an experiment may be realized and used as a tool to test confinement effects and phase transitions in quantum simulation of dynamic gauge theories.Comment: Superceding arXiv:1206.2021v1 [quant-ph

    Frequency-Domain Coherent Control of Femtosecond Two-Photon Absorption: Intermediate-Field vs. Weak-Field Regime

    Full text link
    Coherent control of femtosecond two-photon absorption in the intermediate-field regime is analyzed in detail in the powerful frequency domain using an extended 4th-order perturbative description. The corresponding absorption is coherently induced by the weak-field non-resonant two-photon transitions as well as by four-photon transitions involving three absorbed photons and one emitted photons. The interferences between these two groups of transitions lead to a difference between the intermediate-field and weak-field absorption dynamics. The corresponding interference nature (constructive or destructive) strongly depends on the detuning direction of the pulse spectrum from half the two-photon transition frequency. The model system of the study is atomic sodium, for which both experimental and theoretical results are obtained. The detailed understanding obtained here serves as a basis for coherent control with rationally-shaped femtosecond pulses in a regime of sizable absorption yields.Comment: 25 pages, 5 figure

    Voltage dependence of Landau-Lifshitz-Gilbert damping of a spin in a current driven tunnel junction

    Full text link
    We present a theory of Landau-Lifshitz-Gilbert damping α\alpha for a localized spin S{\vec S} in the junction coupled to the conduction electrons in both leads under an applied volatege VV. We find the voltage dependence of the damping term reflecting the energy dependence of the density of states. We find the effect is linear in the voltage and cotrolled by particle-hole asymmetry of the leads.Comment: 6 pages, 3 figure

    A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

    Full text link
    We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent". Within our multiresolution approach, we compute information theory based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations as manifest in information theory overlaps. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed both at zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentation correspond to the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.Comment: 26 pages, 22 figure

    The Moduli Space and M(atrix) Theory of 9d N=1 Backgrounds of M/String Theory

    Get PDF
    We discuss the moduli space of nine dimensional N=1 supersymmetric compactifications of M theory / string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Mobius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Mobius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2+1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.Comment: 43 pages, 7 figures, JHEP format. v3: typos correcte

    Spin and Spin-Wave Dynamics in Josephson Junctions

    Get PDF
    We extend the Keldysh formulation to quantum spin systems and derive exact equations of motion. This allows us to explore the dynamics of single spins and of ferromagnets when these are inserted between superconducting leads. Several new effects are reported. Chief amongst these are nutations of single S=1/2 spins in Josephson junctions. These nutations are triggered by the superconducting pairing correlations in the leads. Similarly, we find that on rather universal grounds, magnets display unconventional spin wave dynamics when placed in Josephson junctions. These lead to modifications in the tunneling current.Comment: (14 pages, 5 figures

    PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells

    Get PDF
    Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity

    Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models

    Full text link
    We study aspects of Wess-Zumino models related to SUSY and R-symmetry breaking at tree-level. We present a recipe for constructing a wide class of tree-level SUSY and R-breaking models. We also deduce a general property shared by all tree-level SUSY breaking models that has broad application to model building. In particular, it explains why many models of direct gauge mediation have anomalously light gauginos (even if the R-symmetry is broken spontaneously by an order one amount). This suggests new approaches to dynamical SUSY breaking which can generate large enough gaugino masses.Comment: 23 pages. v2: references added, minor changes. v3: comment on non-renormalizable case adde

    Avoided Critical Behavior in O(n) Systems

    Full text link
    Long-range frustrating interactions, even if their strength is infinitesimal, can give rise to a dramatic proliferations of ground or near-ground states. As a consequence, the ordering temperature can exhibit a discontinuous drop as a function of the frustration. A simple model of the doped Mott insulator, where the short-range tendency of the holes to phase separate competes with long-range Coulomb effects, exhibits this "avoided critical" behavior. This model may serve as a paradigm for many other systems.Comment: 4 pages, 2 figure
    corecore