445 research outputs found

    A Combined Compton and Coded-aperture Telescope for Medium-energy Gamma-ray Astrophysics

    Full text link
    A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, e.g. a possible explanation for the excess positron emission from the Galactic Center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter Cadmium Zinc Telluride (CdZnTe) detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope showed achievable energy resolutions of 1.68%\% FWHM at 511 keV and 1.11%\% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63^{\circ} FWHM at 511 keV and 1.30^{\circ} FWHM at 1809 keV, and is capable of resolving sources to at least 0.2^{\circ} at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton imaging mode yields an effective area of 183 cm2^{2} at 511 keV and an anticipated all-sky sensitivity of 3.6 x 106^{-6} photons cm2^{-2} s1^{-1} for a broadened 511 keV source over a 2-year observation time. Additionally, combining a coded mask with a Compton imager to improve point source localization for positron detection has been demonstrated

    NuSTAR Observations of G11.2–0.3

    Get PDF
    We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2−0.3 and its central pulsar powered pulsar J1811−1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Γ = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Γ = 1.32 ± 0.07 up to 300 keV without evidence of curvature

    The MEGA Advanced Compton Telescope Project

    Get PDF
    The goal of the Medium Energy Gamma-ray Astronomy (MEGA) telescope is to improve sensitivity at medium gamma-ray energies (0.4-50 MeV) by at least an order of magnitude over that of COMPTEL. This will be achieved with a new compact design that allows for a very wide field of view, permitting a sensitive all-sky survey and the monitoring of transient and variable sources. The key science objectives for MEGA include the investigation of cosmic high-energy particle accelerators, studies of nucleosynthesis sites using gamma-ray lines, and determination of the large-scale structure of galactic and cosmic diffuse background emission. MEGA records and images gamma-ray events by completely tracking both Compton and pair creation interactions in a tracker of double-sided silicon strip detectors and a calorimeter of CsI crystals able to resolve in three dimensions. We present initial laboratory calibration results from a small prototype MEGA telescope.Comment: 7 pages LaTeX, 5 figures, to appear in New Astronomy Reviews (Proceedings of the Ringberg Workshop "Astronomy with Radioactivities III"

    Validation of Geant4-based Radioactive Decay Simulation

    Full text link
    Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling

    Development of Silicon Strip Detectors for a Medium Energy Gamma-ray Telescope

    Full text link
    We report on the design, production, and testing of advanced double-sided silicon strip detectors under development at the Max-Planck-Institute as part of the Medium Energy Gamma-ray Astronomy (MEGA) project. The detectors are designed to form a stack, the "tracker," with the goal of recording the paths of energetic electrons produced by Compton-scatter and pair-production interactions. Each layer of the tracker is composed of a 3 x 3 array of 500 micron thick silicon wafers, each 6 cm x 6 cm and fitted with 128 orthogonal p and n strips on opposite sides (470 micron pitch). The strips are biased using the punch-through principle and AC-coupled via metal strips separated from the strip implant by an insulating oxide/nitride layer. The strips from adjacent wafers in the 3 x 3 array are wire-bonded in series and read out by 128-channel TA1.1 ASICs, creating a total 19 cm x 19 cm position-sensitive area. At 20 degrees C a typical energy resolution of 15-20 keV FWHM, a position resolution of 290 microns, and a time resolution of ~1 microsec is observed.Comment: 9 pages, 13 figures, to appear in NIM-A (Proceedings of the 9th European Symposium on Semiconductor Detectors

    Quantifying the unknown: issues in simulation validation and their experimental impact

    Full text link
    The assessment of the reliability of Monte Carlo simulations is discussed, with emphasis on uncertainty quantification and the related impact on experimental results. Methods and techniques to account for epistemic uncertainties, i.e. for intrinsic knowledge gaps in physics modeling, are discussed with the support of applications to concrete experimental scenarios. Ongoing projects regarding the investigation of epistemic uncertainties in the Geant4 simulation toolkit are reported.Comment: To be published in the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo, Como, 3-7 October 201
    corecore