35 research outputs found

    Application of constitutive friction laws to glacier seismicity

    Get PDF
    While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick-slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris-laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice-slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick-slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock-on-rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate-and-state friction laws that were developed for rock friction

    Linking bedrock discontinuities to glacial quarrying

    Get PDF
    Quarrying and abrasion are the two principal processes responsible for glacial erosion of bedrock. The morphologies of glacier hard beds depend on the relative effectiveness of these two processes, as abrasion tends to smooth bedrock surfaces and quarrying tends to roughen them. Here we analyze concentrations of bedrock discontinuities in the Tsanfleuron forefield, Switzerland, to help determine the geologic conditions that favor glacial quarrying over abrasion. Aerial discontinuity concentrations are measured from scaled drone-based photos where fractures and bedding planes in the bedrock are manually mapped. A Tukey honest significant difference test indicates that aerial concentration of bed-normal bedrock discontinuities is not significantly different between quarried and non-quarried areas of the forefield. Thus, an alternative explanation is needed to account for the spatial variability of quarried areas. To investigate the role that bed-parallel discontinuities might play in quarrying, we use a finite element model to simulate bed-normal fracture propagation within a stepped bed with different step heights. Results indicate that higher steps (larger spacing of bed-parallel discontinuities) propagate bed-normal fractures more readily than smaller steps. Thus, the spacing of bed-parallel discontinuities could exert strong control on quarrying by determining the rate that blocks can be loosened from the host rock

    Combined Immunodeficiency Due to MALT1 Mutations, Treated by Hematopoietic Cell Transplantation

    Get PDF
    PURPOSE: A male infant developed generalized rash, intestinal inflammation and severe infections including persistent cytomegalovirus. Family history was negative, T cell receptor excision circles were normal, and engraftment of maternal cells was absent. No defects were found in multiple genes associated with severe combined immunodeficiency. A 9/10 HLA matched unrelated hematopoietic cell transplant (HCT) led to mixed chimerism with clinical resolution. We sought an underlying cause for this patient’s immune deficiency and dysregulation. METHODS: Clinical and laboratory features were reviewed. Whole exome sequencing and analysis of genomic DNA from the patient, parents and 2 unaffected siblings was performed, revealing 2 MALT1 variants. With a host-specific HLA-C antibody, we assessed MALT1 expression and function in the patient’s post-HCT autologous and donor lymphocytes. Wild type MALT1 cDNA was added to transformed autologous patient B cells to assess functional correction. RESULTS: The patient had compound heterozygous DNA variants affecting exon 10 of MALT1 (isoform a, NM_006785.3), a maternally inherited splice acceptor c.1019-2A > G, and a de novo deletion of c.1059C leading to a frameshift and premature termination. Autologous lymphocytes failed to express MALT1 and lacked NF-ÎșB signaling dependent upon the CARMA1, BCL-10 and MALT1 signalosome. Transduction with wild type MALT1 cDNA corrected the observed defects. CONCLUSIONS: Our nonconsanguineous patient with early onset profound combined immunodeficiency and immune dysregulation due to compound heterozygous MALT1 mutations extends the clinical and immunologic phenotype reported in 2 prior families. Clinical cure was achieved with mixed chimerism after nonmyeloablative conditioning and HCT. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10875-014-0125-1) contains supplementary material, which is available to authorized users

    The cardiovascular risk profile of middle-aged women with polycystic ovary syndrome

    Get PDF
    Objectives: Contradictory results have been reported regarding the association between polycystic ovary syndrome (PCOS) and cardiovascular disease (CVD). We assessed the cardiometabolic phenotype and prevalence of CVD in middle-aged women with PCOS, compared with age-matched controls from the general population, and estimated 10-year CVD risk and cardiovascular health score. Design: A cross-sectional study. Participants: 200 women aged >45 with PCOS, and 200 age-matched controls. Measurements: Anthropometrics, insulin, lipid levels, prevalence of metabolic syndrome and type II diabetes. Ten-year Framingham risk score and the cardiovascular health score were calculated, and carotid intima-media thickness (cIMT) was measured. Results: Mean age was 50.5 years (SD = 5.5) in women with PCOS and 51.0 years (SD = 5.2) in controls. Increased waist circumference, body mass index and hypertension were more often observed in women with PCOS (P <.001). In women with PCOS, the prevalence of type II diabetes and metabolic syndrome was not significantly increased and lipid levels were not different from controls. cIMT was lower in women with PCOS (P <.001). Calculated cardiovascular health and 10-year CVD risk were similar in women with PCOS and controls. Conclusions: Middle-aged women with PCOS exhibit only a moderately unfavourable cardiometabolic profile compared to age-matched controls, even though they present with an increased BMI and waist circumference. Furthermore, we found no evidence for increased (10-year) CVD risk or more severe atherosclerosis compared with controls from the general population. Long-term follow-up of women with PCOS is necessary to provide a definitive answer concerning lon

    Controls on Subglacial Rock Friction: Experiments With Debris in Temperate Ice

    No full text
    Glacier sliding has major environmental consequences, but friction caused by debris in the basal ice of glaciers is seldom considered in sliding models. To include such friction, divergent hypotheses for clast‐bed contact forces require testing. In experiments we rotate an ice ring (outside diameter = 0.9 m), with and without isolated till clasts, over a smooth rock bed. Ice is kept at its pressure‐melting temperature, and meltwater drains along a film at the bed to atmospheric pressure at its edges. The ice pressure or bed‐normal component of ice velocity is controlled, while bed shear stress is measured. Results with debris‐free ice indicate friction coefficients This article is published as Thompson, A. C., Iverson, N. R., & Zoet, L. K. (2020). Controls on subglacial rock friction: Experiments with debris in temperate ice. Journal of Geophysical Research: Earth Surface, 125, e2020JF005718. doi: 10.1029/2020JF005718. Posted with permission.</p

    Linking bedrock discontinuities to glacial quarrying

    No full text
    Quarrying and abrasion are the two principal processes responsible for glacial erosion of bedrock. The morphologies of glacier hard beds depend on the relative effectiveness of these two processes, as abrasion tends to smooth bedrock surfaces and quarrying tends to roughen them. Here we analyze concentrations of bedrock discontinuities in the Tsanfleuron forefield, Switzerland, to help determine the geologic conditions that favor glacial quarrying over abrasion. Aerial discontinuity concentrations are measured from scaled drone-based photos where fractures and bedding planes in the bedrock are manually mapped. A Tukey honest significant difference test indicates that aerial concentration of bed-normal bedrock discontinuities is not significantly different between quarried and non-quarried areas of the forefield. Thus, an alternative explanation is needed to account for the spatial variability of quarried areas. To investigate the role that bed-parallel discontinuities might play in quarrying, we use a finite element model to simulate bed-normal fracture propagation within a stepped bed with different step heights. Results indicate that higher steps (larger spacing of bed-parallel discontinuities) propagate bed-normal fractures more readily than smaller steps. Thus, the spacing of bed-parallel discontinuities could exert strong control on quarrying by determining the rate that blocks can be loosened from the host rock.This article is published as Woodard, J. B., L. K. Zoet, N. R. Iverson, and C. Helanow. "Linking bedrock discontinuities to glacial quarrying." Annals of Glaciology 60, no. 80 (2019): 66-72. doi: 10.1017/aog.2019.36.</p
    corecore