1,386 research outputs found

    Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    Full text link
    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 um CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from prototype circuits and from irradiation studies with 24 GeV protons up to 57 Mrad (1.9 x 10e15 p/cm2).Comment: 8th Tropical Seminar on Innovative Particle and Radiation Detectors, Siena, Italy (2002

    In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours

    Get PDF
    The mitochondrial lipidome influences ETC (electron transport chain) and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma), both syngeneic with the C57BL/6J (B6) mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production

    EU regulation of endocrine disruptors: a missed opportunity

    Get PDF
    The European Commission (EC) has missed a unique opportunity to develop a regulatory system that sets new standards in the protection against endocrine-disrupting chemicals. The proposed amendments to the European Union (EU) pesticide law and the criteria for the identification of endocrine disruptors that the EC published on June 15, 2016, after a delay of almost 3 years,1 ensure that hardly any endocrine disruptors used as pesticides will be barred from commerce

    Science-based regulation of endocrine disrupting chemicals in Europe: which approach?

    Get PDF
    Endocrine disruptors are defined by WHO as “exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations”.1 European Union (EU) laws on pesticides (plant protection products regulation [PPPR]) and biocide products regulation (BPR), enacted in 2009 and 2012, respectively, place restrictions on the use of active substances with severe forms of toxicity, including carcinogenicity, mutagenicity, reproductive toxicity, and endocrine disruption

    A Search for Charmless BVVB\to VV Decays

    Full text link
    We have studied two-body charmless decays of the BB meson into the final states ρ0ρ0\rho^0 \rho^0, K0ρ0K^{*0} \rho^0, K0K0K^{*0} K^{*0}, K0K0ˉK^{*0} \bar{K^{*0}}, K+ρ0K^{*+} \rho^0, K+K0ˉK^{*+} \bar{K^{*0}}, and K+KK^{*+} K^{*-} using only decay modes with charged daughter particles. Using 9.7 million BBˉB \bar{B} pairs collected with the CLEO detector, we place 90% confidence level upper limits on the branching fractions, (0.467.0)×105(0.46-7.0)\times 10^{-5}, depending on final state and polarization.Comment: 8 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    First Observation of Υ(1S)γππ\Upsilon(1S)\to \gamma\pi\pi

    Full text link
    We report on a study of exclusive radiative decays of the Upsilon(1S) resonance collected with the CLEO-II detector operating at CESR. We present the first observation of the radiative decays Upsilon(1S)->gamma pi+pi- and Upsilon(1S)->gamma pi0pi0. For the dipion mass regime m(pipi)>1.0 GeV, we obtain Br(Upsilon(1S)->gamma pi+pi-=(6.3+/-1.2+/-1.3) x 10^(-5), and Br(Upsilon(1S)->gamma pi0pi0=(1.7+/-0.6+/-0.3) x 10^(-5). The observed gamma pipi events are consistent with the hypothesis Upsilon(1S)->gamma f2(1270).Comment: 9 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore