675 research outputs found
Biases in the determination of dynamical parameters of star clusters: today and in the Gaia era
The structural and dynamical properties of star clusters are generally
derived by means of the comparison between steady-state analytic models and the
available observables. With the aim of studying the biases of this approach, we
fitted different analytic models to simulated observations obtained from a
suite of direct N-body simulations of star clusters in different stages of
their evolution and under different levels of tidal stress to derive mass, mass
function and degree of anisotropy. We find that masses can be
under/over-estimated up to 50% depending on the degree of relaxation reached by
the cluster, the available range of observed masses and distances of radial
velocity measures from the cluster center and the strength of the tidal field.
The mass function slope appears to be better constrainable and less sensitive
to model inadequacies unless strongly dynamically evolved clusters and a
non-optimal location of the measured luminosity function are considered. The
degree and the characteristics of the anisotropy developed in the N-body
simulations are not adequately reproduced by popular analytic models and can be
detected only if accurate proper motions are available. We show how to reduce
the uncertainties in the mass, mass-function and anisotropy estimation and
provide predictions for the improvements expected when Gaia proper motions will
be available in the near future.Comment: 14 pages, 8 figures, accepted for publication by MNRA
Homogeneous photometry VII. Globular clusters in the Gaia era
We present wide-field, ground-based Johnson-Cousins UBVRI photometry for 48
Galactic globular clusters based on almost 90000 public and proprietary images.
The photometry is calibrated with the latest transformations obtained in the
framework of our secondary standard project, with typical internal and external
uncertainties of order a few millimagnitudes. These data provide a bridge
between existing small-area, high-precision HST photometry and all
sky-catalogues from large surveys like Gaia, SDSS, or LSST. For many clusters,
we present the first publicly available photometry in some of the five bands
(typically U and R). We illustrate the scientific potential of the photometry
with examples of surface density and brightness profiles and of
colour-magnitude diagrams, with the following highlights: (i) we study the
morphology of NGC 5904, finding a varying ellipticity and position angle as a
function of radial distance; (ii) we show U-based colour-magnitude diagrams and
demonstrate that no cluster in our sample is free from multiple stellar
populations, with the possible exception of a few clusters with high and
differential reddening or field contamination, for which more sophisticated
investigations are required. This is true even for NGC 5694 and Terzan 8, that
were previously considered as (mostly) single-population candidates.Comment: 24 pages, 12 figures, accepted for publication by MNRA
Mass modelling globular clusters in the Gaia era: a method comparison using mock data from an N-body simulation of M 4
As we enter a golden age for studies of internal kinematics and dynamics of Galactic globular clusters (GCs), it is timely to assess the performance of modelling techniques in recovering the mass, mass profile, and other dynamical properties of GCs. Here, we compare different mass-modelling techniques (distribution function (DF)-based models, Jeans models, and a grid of N-body models) by applying them to mock observations from a star-by-star N-body simulation of the GC M 4 by Heggie. The mocks mimic existing and anticipated data for GCs: surface brightness or number density profiles, local stellar mass functions, line-of-sight velocities, and Hubble Space Telescope-and Gaia-like proper motions. We discuss the successes and limitations of the methods. We find that multimass DF-based models, Jeans, and N-body models provide more accurate mass profiles compared to single-mass DF-based models. We highlight complications in fitting the kinematics in the outskirts due to energetically unbound stars associated with the cluster ('potential escapers', captured neither by truncated DF models nor by N-body models of clusters in isolation), which can be avoided with DF-based models including potential escapers, or with Jeans models. We discuss ways to account for mass segregation. For example, three-component DF-based models with freedom in their mass function are a simple alternative to avoid the biases of single-mass models (which systematically underestimate the total mass, half-mass radius, and central density), while more realistic multimass DF-based models with freedom in the remnant content represent a promising avenue to infer the total mass and the mass function of remnants
Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff
Recently it has been shown that when an equation that allows so-called pulled
fronts in the mean-field limit is modelled with a stochastic model with a
finite number of particles per correlation volume, the convergence to the
speed for is extremely slow -- going only as .
In this paper, we study the front propagation in a simple stochastic lattice
model. A detailed analysis of the microscopic picture of the front dynamics
shows that for the description of the far tip of the front, one has to abandon
the idea of a uniformly translating front solution. The lattice and finite
particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the
front, while the average front behind it ``crosses over'' to a uniformly
translating solution. In this formulation, the effect of stochasticity on the
asymptotic front speed is coded in the probability distribution of the times
required for the advancement of the ``foremost bin''. We derive expressions of
these probability distributions by matching the solution of the far tip with
the uniformly translating solution behind. This matching includes various
correlation effects in a mean-field type approximation. Our results for the
probability distributions compare well to the results of stochastic numerical
simulations. This approach also allows us to deal with much smaller values of
than it is required to have the asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.
Streamer Propagation as a Pattern Formation Problem: Planar Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file
- …