34 research outputs found

    Measuring Impacts in Risk Management Education--The Beehive Master Beef Manager Program

    Get PDF
    The purpose of Extension risk management education is to assist clientele by helping them make better management decisions. The results of this effort can sometimes take months or years to be expressed. It is difficult for Extension faculty to wait for this interval because administrators and funding entities demand results for programs usually within the space of one year. Curriculum-based programming enables faculty member(s) to develop enough data about attitude changes and knowledge transfer over several workshops to demonstrate statistical changes, compared to single workshops. Using multiple evaluation instruments, Extension faculty can show implementation patterns that further demonstrate program value

    Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences

    No full text
    Over the past decade, several high-value proteins have been produced in different transgenic plant tissues such as leaves, tubers, and seeds(1,2). Despite recent advances, many heterologous proteins accumulate to low concentrations, and the optimization of expression cassettes to make in planta production and purification economically feasible remains critical. Here, the regulatory sequences of the seed storage protein gene arcelin 5-I (arc5-I) of common bean (Phaseolus vulgaris)(3) were evaluated for producing heterologous proteins in dicotyledonous seeds. The murine single-chain variable fragment (scFv) G4 (ref. 4) was chosen as model protein because of the current industrial interest in producing antibodies and derived fragments in crops(5,6). In transgenic Arabidopsis thaliana seed stocks, the scFv under control of the 35S promoter of the cauliflower mosaic virus (CaMV) accumulated to approximately 1% of total soluble protein (TSP). However, a set of seed storage promoter constructs boosted the scFv accumulation to exceptionally high concentrations, reaching no less than 36.5% of TSP in homozygous seeds. Even at these high concentrations, the scFv proteins had antigen-binding activity and affinity similar to those produced in Escherichia coli. The feasibility of heterologous protein production under control of arc5-I regulatory sequences was also demonstrated in Phaseolus acutifolius, a promising crop for large-scale production

    Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies

    Get PDF
    Background: Bacterial biofilms are predominant in natural ecosystems and constitute a public health threat because of their outstanding resistance to antibacterial treatments and especially to antibiotics. To date, several systems have been developed to grow bacterial biofilms in order to study their phenotypes and the physiology of sessile cells. Although relevant, such systems permit analysis of various aspects of the biofilm state but often after several hours of bacterial growth.Results: Here we describe a simple and easy-to-use system for growing P. aeruginosa biofilm based on the medium adsorption onto glass wool fibers. This approach which promotes bacterial contact onto the support, makes it possible to obtain in a few minutes a large population of sessile bacteria. Using this growth system, we demonstrated the feasibility of exploring the early stages of biofilm formation by separating by electrophoresis proteins extracted directly from immobilized cells. Moreover, the involvement of protein synthesis in P. aeruginosa attachment is demonstrated.Conclusions: Our system provides sufficient sessile biomass to perform biochemical and proteomic analyses from the early incubation period, thus paving the way for the molecular analysis of the early stages of colonization that were inaccessible to date
    corecore