3 research outputs found

    Stakeholder perspectives on shale gas fracking: A Q-method study of environmental discourses

    Get PDF
    The rapid expansion of shale gas exploration worldwide is a significant source of environmental controversy. Successful shale gas policymaking is dependent upon a clear understanding of the dynamics of competing stakeholder perspectives on these issues, and so methods are needed to delineate the areas of agreement and conflict that emerge. This empirical study, based in the United Kingdom, examines emergent perspectives on a range of environmental, health and socio-economic impacts associated with shale gas fracking using Q- methodology: a combined qualitative-quantitative approach. The analysis reveals three typologies of perspectives amongst key industry, civil society and non-affiliated citizen stakeholders; subsequently contextualised in relation to Dryzek’s typology of environmental discourses. These are labelled A) “Don’t trust the fossil fuels industry: campaign for renewables” (mediating between sustainable development and democratic pragmatism discourses); B) “Shale gas is a bridge fuel: economic growth and environmental scepticism” (mediating between economic rationalism and ecological modernisation discourses); and C) “Take place protective action and legislate in the public interest” (reflecting a discourse of administrative rationalism). The implications of these competing discourses for nascent shale gas policy in the UK are discussed in light of recent Government public consultation on changes to national planning policy

    Geomechanical characteristics of gas shales: A case study in the North Perth basin

    No full text
    Gas shales are one type of unconventional reservoirs which have attracted significant attention for gas production in recent years. Gas production from very tight shales requires employment of hydraulic fracturing as a stimulation technique. To design hydraulic fracture operation the mechanical properties of the targeted and surrounding formations should be estimated. Also, the magnitude and orientation of in situ stresses in the field need to be known to estimate the fracture initiation and propagation pressures. This study focuses on gas shale characteristics in the North Perth Basin and uses data corresponding to well Arrowsmith-2 (AS-2) which is the first dedicated shale gas well drilled in Western Australia. A log-based analysis was used to build the rock mechanical model (RMM). The RMM results were used to set up a hydraulic fracturing laboratory experiment. The test was done in the presence of three principal stresses to mimic the real field stress conditions. The test results include the pressure–time curve which was used to estimate the initiation and propagation pressure at that depth. The results were used to draw some practical conclusions related to hydraulic fracturing operation in the field
    corecore