250 research outputs found

    Low risk for developing diabetes among the offspring of individuals with exceptional longevity and their spouses

    Get PDF
    Little is known about the risk of type 2 diabetes (T2D) among the offspring of individuals with exceptional longevity. We determined the incidence of and potential risk and protective factors for T2D among the offspring of probands and offspring\u27s spouses (mean age=60 years, range 32-88 years) in the Long Life Family Study (LLFS), a multicenter cohort study of 583 two-generation families with a clustering of healthy aging and exceptional longevity. Incident T2D was defined as fasting serum glucose ≥126 mg/dl, or HbA1c of ≥6.5%, or self-reported with doctor diagnosis of T2D, or the use of anti-diabetic medication during a mean follow-up 7.9 ± 1.1 years. Among offspring (n=1105) and spouses (n=328) aged 45-64 years without T2D at baseline visit, the annual incident rate of T2D was 3.6 and 3.0 per 1000 person-years, respectively, while among offspring (n=444) and spouses (n=153) aged 65+ years without T2D at baseline, the annual incident rate of T2D was 7.2 and 7.4 per 1000 person-years, respectively. By comparison, the annual incident rate of T2D per 1000 person-years in the U.S. general population was 9.9 among those aged 45-64, and 8.8 among those aged 65+ years (2018 National Health Interview Survey). Baseline BMI, waist circumference, and fasting serum triglycerides were positively associated with incident T2D, whereas fasting serum HDL-C, adiponectin, and sex hormone binding globulin were protective against incident T2D among the offspring (all P\u3c0.05). Similar associations were observed among their spouses (all P\u3c0.05, except sex hormone binding globulin). In addition, we observed that among spouses, but not offspring, fasting serum interleukin 6 and insulin-like growth factor 1 were positively associated with incident T2D (P\u3c0.05 for both). Our study suggests that both offspring of long-living individuals and their spouses, especially middle-aged, share a similar low risk for developing T2D as compared with the general population. Our findings also raise the possibility that distinct biological risk and protective factors may contribute to T2D risk among offspring of long-lived individuals when compared with their spouses. Future studies are needed to identify the mechanisms underlying low T2D risk among the offspring of individuals with exceptional longevity, and also among their spouses

    Genetic association analysis of the cardiovascular biomarker: N-terminal fragment of pro-B-type natriuretic peptide (NT-proBNP)

    Get PDF
    BACKGROUND: NT-proBNP is a biomarker of cardiovascular disease (CVD). Little is known about the heritability and genetic variants associated with NT-proBNP. Therefore, we estimated the heritability of and examined genetic associations of SNPs in the BNP gene region with circulating NT-proBNP and prevalent CVD in 4,331 participants from the Long Life Family Study (LLFS). METHODS AND RESULTS: Genotypes of 10 SNPs from the NPPB and NPPA regions that encode BNP and A-type natriuretic peptide, respectively, were tested for association with NT-proBNP and prevalent cardiovascular disease and risk factors. We performed analyses using the Sequential Oligogenic Linkage Analysis (SOLAR) program to account for family relatedness, and adjusted all models for age, sex, and field center. The mean age of the LLFS was 69.8 years (range 24-110) with 55.4% females. NT-proBNP was significantly heritable (h2 = 0.21; P = 4x10-14), and the minor alleles of rs632793 (p\u3c0.001) and rs41300100 (p = 0.05) were independently associated with higher serum NT-proBNP levels. Additionally, the minor allele of rs632793 was significantly and consistently associated with lower prevalent CVD, including blood pressures, independent of NT-proBNP level (all P\u3c0.05). Results for prevalent CVD, but not NT-proBNP levels, showed significant interaction by familial generation. CONCLUSION: In this family-based study of subjects with exceptional longevity, we identified several allelic variants in the BNP gene region associated with NT-pro-BNP levels and prevalent CVD

    Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families

    Get PDF
    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both P<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension

    Simple tandem repeat (TTTA)(n )polymorphism in CYP19 (aromatase) gene and breast cancer risk in Nigerian women

    Get PDF
    BACKGROUND: Breast cancer is the most common cancer and the leading cause of cancer related deaths in women worldwide. The incidence of the disease is increasing globally and this increase is occurring at a faster rate in population groups that hirtherto enjoyed low incidence. This study was designed to evaluate the role of a simple tandem repeat polymorphism (STRP) in the aromatase (CYP19) gene in breast cancer susceptibility in Nigerian women, a population of indigenous sub-Saharan African ancestry. METHODS: A case-control study recruiting 250 women with breast cancer and 250 women without the disease from four University Teaching Hospitals in Southern Nigeria was carried out between September 2002 and April 2004. Participants were recruited from the surgical outpatient clinics and surgical wards of the Nigerian institutions. A polymerase chain reaction (PCR)-based assay was employed for genotyping and product sizes were detected with an ABI 3730 DNA Analyzer. RESULTS: Conditional logistic regression analysis revealed that harboring the putative high risk genotypes conferred a 29% increased risk of breast cancer when all women in the study were considered (Odds ratio [OR] = 1.29, 95% confidence interval [CI] 0.83–2.00), although this association was not statistically significant. Subgroup analysis based on menopausal status showed similar results among premenopausal women (OR = 1.35, 95% CI 0.76–2.41 and postmenopausal women (OR = 1.27, 95% CI 0.64–2.49). The data also demonstrated marked differences in the distribution of (TTTA)(n )repeats in Nigerian women compared with other populations. CONCLUSION: This study has shown that harboring 10 or more repeats of the microsatellite (TTTA)(n )repeats of the CYY19 gene is associated with a modest increased risk of breast cancer in Nigerian women

    Leukocyte telomere length is unrelated to cognitive performance among non-demented and demented persons: An examination of long life family study participants

    Get PDF
    OBJECTIVE: Leukocyte telomere length (LTL) is a widely hypothesized biomarker of biological aging. Persons with shorter LTL may have a greater likelihood of developing dementia. We investigate whether LTL is associated with cognitive function, differently for individuals without cognitive impairment versus individuals with dementia or incipient dementia. METHOD: Enrolled subjects belong to the Long Life Family Study (LLFS), a multi-generational cohort study, where enrollment was predicated upon exceptional family longevity. Included subjects had valid cognitive and telomere data at baseline. Exclusion criteria were age ≤ 60 years, outlying LTL, and missing sociodemographic/clinical information. Analyses were performed using linear regression with generalized estimating equations, adjusting for sex, age, education, country, generation, and lymphocyte percentage. RESULTS: Older age and male gender were associated with shorter LTL, and LTL was significantly longer in family members than spouse controls (p \u3c 0.005). LTL was not associated with working or episodic memory, semantic processing, and information processing speed for 1613 cognitively unimpaired individuals as well as 597 individuals with dementia or incipient dementia (p \u3c 0.005), who scored significantly lower on all cognitive domains (p \u3c 0.005). CONCLUSIONS: Within this unique LLFS cohort, a group of families assembled on the basis of exceptional survival, LTL is unrelated to cognitive ability for individuals with and without cognitive impairment. LTL does not change in the context of degenerative disease for these individuals who are biologically younger than the general population

    NIA Long Life Family Study: Objectives, design, and heritability of cross-sectional and longitudinal phenotypes

    Get PDF
    The NIA Long Life Family Study (LLFS) is a longitudinal, multicenter, multinational, population-based multigenerational family study of the genetic and nongenetic determinants of exceptional longevity and healthy aging. The Visit 1 in-person evaluation (2006-2009) recruited 4 953 individuals from 539 two-generation families, selected from the upper 1% tail of the Family Longevity Selection Score (FLoSS, which quantifies the degree of familial clustering of longevity). Demographic, anthropometric, cognitive, activities of daily living, ankle-brachial index, blood pressure, physical performance, and pulmonary function, along with serum, plasma, lymphocytes, red cells, and DNA, were collected. A Genome Wide Association Scan (GWAS) (Ilumina Omni 2.5M chip) followed by imputation was conducted. Visit 2 (2014-2017) repeated all Visit 1 protocols and added carotid ultrasonography of atherosclerotic plaque and wall thickness, additional cognitive testing, and perceived fatigability. On average, LLFS families show healthier aging profiles than reference populations, such as the Framingham Heart Study, at all age/sex groups, for many critical healthy aging phenotypes. However, participants are not uniformly protected. There is considerable heterogeneity among the pedigrees, with some showing exceptional cognition, others showing exceptional grip strength, others exceptional pulmonary function, etc. with little overlap in these families. There is strong heritability for key healthy aging phenotypes, both cross-sectionally and longitudinally, suggesting that at least some of this protection may be genetic. Little of the variance in these heritable phenotypes is explained by the common genome (GWAS + Imputation), which may indicate that rare protective variants for specific phenotypes may be running in selected families
    • …
    corecore