447 research outputs found

    HIGH-SENSITIVITY C-REACTIVE PROTEIN (hsCRP) IN YOUNG ADULTS: RELATION TO AEROBIC CAPACITY, PHYSICAL ACTIVITY AND RISK FACTORS FOR CARDIOVASCULAR DISEASES

    Get PDF
    Atheromatosis develops as a result of a chronic inflammatory process of the arteries. Inflammatory biomarkers, particularly high-sensitivity C-reactive protein (hsCRP), positively correlate with atheromatosis risk factors and can be used to estimate and predict the risk of cardiovascular events. The purpose of this study was to evaluate the relationship between hsCRP concentration and BMI, body composition, classical risk factors for cardiovascular diseases, energy expenditure for physical activity (WEE) and  ·VO2max. 166 volunteers (78 women and 88 men) were included in the examinations. Their mean age was 20.2±0.9 years. Health condition was described by the following variables: smoking, WEE,  ·VO2max, body mass index (BMI), waist-to-hip ratio (WHR), fat mass (FM), fat-free mass (FFM), lipid profile, hsCRP, glucose and insulin concentration, and insulin resistance. Between the subgroups created on the basis of hsCRP concentration, in quartiles 1 to 3 and quartile 4, a comparative analysis was carried out. 79.5�0of women and 69.3�0of men had hsCRP values within the references ranges. Moderately high values were found in 14.1�0of women and 22.7�0of men and high in 6.4�0and 7.9�20respectively. Mean values of BMI, FFM, WHR, WEE,  ·VO2max, glucose and triglyceride concentration, and TC/HDL index were significantly lower, while FM and HDL were significantly higher, in women than in men. In the quartile 4 subgroup compared to the quartile 1-3 subgroup, we found significantly lower HDL concentration and a tendency for higher values of BMI (p=0.06) and TC (p=0.07) as well as higher percentages of smoking among men. In young, physically active, healthy persons, serum concentration of hsCRP is not related to physical activity or  ·VO2max

    Genetic variants influencing effectiveness of exercise training programmes in obesity - An overview of human studies

    Get PDF
    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary

    Effect of BDKRB2 Gene -9/+9 polymorphism on training improvements in competitive swimmers

    Get PDF
    The aim of the study was to investigate the possible association between the BDKRB2 gene and training-induced improvements in swimming performance in well-trained swimmers. One hundred Polish swimmers (52 men and 48 women, aged 18.1 ± 1.9 years), who competed in national and international competitions at middle- (200 m) and long-distance events (≥400 m), were included in the study. Athletes' genotype and allele distributions were analyzed in comparison to 230 unrelated sedentary subjects, who served as controls, with the χ 2 test. All samples were genotyped for the BDKRB2 -9/+9 polymorphism by polymerase chain reaction. The effects of genotype on swimming performance improvements were analyzed with two-way (3 × 2; genotype × time) analysis of variance with metric age as a covariate. The training period of 1.9 ± 0.4 years had a significant (p < 0.01) effect on swimming performance, both in female and male athletes. Both in female and male athletes, the BDKRB2 gene -9/+9 polymorphism had no significant effect on swimming performance. An interaction effect of BDKRB2 gene -9/+9 polymorphism × time was found for swimming performance only in male athletes. Post hoc analyses showed that swimmers with the +9/+9 BDKRB2 genotype had a greater improvement in swimming performance than swimmers with the -9/+9 polymorphism (p ≤ 0.05). No interaction effects for gender × BDKRB2 gene -9/+9 polymorphism were found for either swimming performance or improvement in swimming performance. These results suggest that the response to long-term exercise training could be modulated by the BDKRB2 gene -9/+9 polymorphism in male athletes. In well-trained swimmers, BDKRB2 gene variation was not found to be an independent determinant of swimming performance

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads

    The NOS3 G894T (rs1799983) and-786T/C (rs2070744) polymorphisms are associated with elite swimmer status

    Get PDF
    Endothelial nitric oxide synthase (NOS3) generates nitric oxide in blood vessels and is involved in the regulation of vascular function, metabolism and muscle fibre type transformations. Evidence suggests that the NOS3 G894T (rs1799983) and -786T/C (rs2070744) polymorphisms are associated with athletic performance. The purpose of this study was to determine the association between the NOS3 G894T and -786T/C polymorphisms with elite swimmer status in Polish athletes. One hundred and ninety-seven Polish swimmers (104 males and 93 females), who competed in national and international events, and 379 healthy control subjects (222 males and 157 females) were recruited for this study. The swimmers were divided into two groups: short distance swimmers (SDS; n=147; 50-200 m) and long distance swimmers (LDS; n=49; more than 500 m). As expected, the frequencies of the -786T/C T allele (77.0 vs. 63.1%, p = 0.0085) and G-T haplotype (63.7 vs. 52.0, p=0.025) were significantly higher in the LDS group in comparison with controls. Compared with the -786T/C CC genotype, the chance of being a long distance swimmer was 8.49 times higher (CI=1.14-62.78, p=0.023) for the carriers of -786T/C T allele than in control subjects. On the other hand, the Asp allele frequency was significantly higher in the female SDS group compared with controls (34.3 vs. 18.5%, p=0.00043). In conclusion, our results demonstrate that the T allele and the G-T haplotype of the -786T/C and G894T polymorphisms may be beneficial for long distance swimmers

    Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners

    Get PDF
    The purpose of this study was to investigate individually and in combination the association between the ACE (I/D), NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val) and AMPD1 (Gln45Ter) variants with endurance performance in a large, performance-homogenous cohort of elite Polish half marathoners. The study group consisted of 180 elite half marathoners: 76 with time 100 minutes. DNA of the subjects was extracted from buccal cells donated by the runners and genotyping was carried out using an allelic discrimination assay with a C1000 Touch Thermal Cycler (Bio-Rad, Germany) instrument with TaqMan® probes (NOS3, UCP2, and AMPD1) and a T100™ Thermal Cycler (Bio-Rad, Germany) instrument (ACE and BDKRB2). We found that the UCP2 Ala55Val polymorphism was associated with running performance, with the subjects carrying the Val allele being overrepresented in the group of most successful runners (100 min group (84.2 vs. 55.8%; OR = 4.23, p 100 min group (73.7 vs. 51.9%; OR = 2.6, p = 0.0034). These data suggest that the likelihood of becoming an elite half marathoner partly depends on the carriage of a high number of endurance-related alleles

    Playing position and match location affect the number of highintensity efforts more than the quality of the opposition in elite football players

    Get PDF
    This study aimed to examine the impact of playing position (PP), match location (ML), and opposition standard (OS) on team and individual acceleration (ACC) and deceleration (DEC) efforts. Fifty professional football players were monitored across 24 English Premier Development League matches during the 2020/21 season. High-intensity ACC and DEC thresholds were set at > +3 m·s−2 and < -3 m·s−2, respectively. Players were divided into five PPs: centre backs (CB; n = 68), full-backs (FB; n = 24), centre midfielders (CM; n = 54), wide midfielders (WM; n = 15), centre forwards (CF; n = 27). Opposition standard was categorised as Top (1st–4th), Middle (5th–9th), and Bottom (9th–13th) based on final league ranking of the study season. Each match location was classified as Home or Away. One way analysis of variance (ANOVA) and a multivariate ANOVA analysed the independent effect of PP, ML and OS on ACC and DEC efforts, and the interaction of all contextual factors, respectively. Acceleration efforts were affected by PP and ML. FB performed 22% more ACC than WM. All players performed 6% more ACC actions during home matches compared to away fixtures. DEC efforts were only affected by PP, with FB and CM executing 26% and 32% greater DEC efforts than CB, respectively. When playing against top or middle teams at home, CB, CM, and CF tended to perform more high-intensity actions than when playing away. In contrast, when playing against top teams at home, FB and WM performed fewer high-intensity actions than when playing away. Playing position and ML affected ACC and DEC actions but not OS

    GSTP1 c.313A&gt;G polymorphism in Russian and Polish athletes

    Get PDF
    © 2017 the American Physiological Society.The GSTP1 gene encodes glutathione S-transferase P1, which is a member of the glutathione S-transferases (GSTs), a family of enzymes playing an important role in detoxification and in the antioxidant defense system. There is some evidence indicating that GSTP1 c.313A>G polymorphism may be beneficial for exercise performance. Therefore, we decided to verify the association between the frequency of GSTP1 c.313A>G variants, physical performance, and athletes’ status in two cohorts: in a group of Russian athletes (n = 507) and in an independent population of Polish athletes (n = 510) in a replication study. The initial association study conducted with the Russian athletes revealed that the frequency of the minor G allele was significantly higher in all athletes than in controls; that was confirmed in the replication study of Polish athletes. In the combined cohort, the differences between athletes (n = 1017) and controls (n = 1246) were even more pronounced (32.7 vs 25.0%, P G single nucleotide polymorphism is associated with improved endurance performance. These observations could support the hypothesis that the GSTP1 G allele may improve exercise performance by better elimination of exercise-induced ROS
    corecore