52 research outputs found

    Immunobiochemical Reconstruction of Influenza Lung Infection—Melanoma Skin Cancer Interactions

    Get PDF
    It was recently reported that acute influenza infection of the lung promoted distal melanoma growth in the dermis of mice. Melanoma-specific CD8+ T cells were shunted to the lung in the presence of the infection, where they expressed high levels of inflammation-induced cell-activation blocker PD-1, and became incapable of migrating back to the tumor site. At the same time, co-infection virus-specific CD8+ T cells remained functional while the infection was cleared. It was also unexpectedly found that PD-1 blockade immunotherapy reversed this effect. Here, we proceed to ground the experimental observations in a mechanistic immunobiochemical model that incorporates T cell pathways that control PD-1 expression. A core component of our model is a kinetic motif, which we call a PD-1 Double Incoherent Feed-Forward Loop (DIFFL), and which reflects known interactions between IRF4, Blimp-1, and Bcl-6. The different activity levels of the PD-1 DIFFL components, as a function of the cognate antigen levels and the given inflammation context, manifest themselves in phenotypically distinct outcomes. Collectively, the model allowed us to put forward a few working hypotheses as follows: (i) the melanoma-specific CD8+ T cells re-circulating with the blood flow enter the lung where they express high levels of inflammation-induced cell-activation blocker PD-1 in the presence of infection; (ii) when PD-1 receptors interact with abundant PD-L1, constitutively expressed in the lung, T cells loose motility; (iii) at the same time, virus-specific cells adapt to strong stimulation by their cognate antigen by lowering the transiently-elevated expression of PD-1, remaining functional and mobile in the inflamed lung, while the infection is cleared. The role that T cell receptor (TCR) activation and feedback loops play in the underlying processes are also highlighted and discussed. We hope that the results reported in our study could potentially contribute to the advancement of immunological approaches to cancer treatment and, as well, to a better understanding of a broader complexity of fundamental interactions between pathogens and tumors

    Positive allosteric modulation of CD11b as a novel therapeutic strategy against lung cancer

    Get PDF
    Lung cancer is one of the leading causes of cancer-related deaths in the United States. A major hurdle for improved therapies is immune suppression mediated by the tumor and its microenvironment. The lung tumor microenvironment (TME) contains large numbers of tumor-associated macrophages (TAMs), which suppress the adaptive immune response, increase neo-vascularization of the tumor, and provide pro-tumor factors to promote tumor growth. CD11b is highly expressed on myeloid cells, including TAMs, where it forms a heterodimeric integrin receptor with CD18 (known as CD11b/CD18, Mac-1, CR3, and αMβ2), and plays an important role in recruitment and biological functions of these cells, and is a validated therapeutic target. Here, we describe our pre-clinical studies targeting CD11b in the context of lung cancer, using pharmacologic and genetic approaches that work via positive allosteric modulation of CD11b function. GB1275 is a novel small molecule modulator of CD11b that is currently in Phase 1/2 clinical development. We assess GB1275 treatment effects on tumor growth and immune infiltrates in the murine Lewis Lung Carcinoma (LLC) syngeneic tumor model. Additionally, as an orthogonal approach to determine mechanisms of action, we utilize our recently developed novel CD11b knock-in (KI) mouse that constitutively expresses CD11b containing an activating isoleucine to glycine substitution at residue 332 in the ligand binding CD11b A-domain (I332G) that acts as a positive allosteric modulator of CD11b activity. We report that pharmacologic modulation of CD11b with GB1275 significantly reduces LLC tumor growth. CD11b KI mice similarly show significant reduction in both the size and rate of LLC tumor growth, as compared to WT mice, mimicking our observed treatment effects with GB1275. Tumor profiling revealed a significant reduction in TAM infiltration in GB1275-treated and in CD11b KI mice, increase in the ratio of M1/M2-like TAMs, and concomitant increase in cytotoxic T cells. The profiling also showed a significant decrease in CCL2 levels and a concomitant reduction in Ly6

    High-Dose Ipilimumab and High-Dose Interleukin-2 for Patients With Advanced Melanoma.

    Get PDF
    High-dose ipilimumab (IPI) and high-dose interleukin-2 (IL-2) are approved agents for metastatic melanoma, but the efficacy and safety of the combination are unknown. The objective of this study was to evaluate the feasibility, safety, and efficacy of combination high-dose IPI and high-dose IL-2 in patients with histologically confirmed advanced unresectable stage III and IV melanoma. This Phase II, multicenter, open-label, single-arm trial was conducted in nine patients enrolled between 12/2014 and 12/2015. Subjects were treated with high-dose IPI 10 mg/kg intravenous (IV) every 3 weeks for four doses starting at week 1 and high-dose IL-2 (600,000 IU/kg IV bolus every 8 h for up to 14 doses) concurrently with IPI at weeks 4 and 7. After the first 12 weeks of combination therapy, maintenance IPI (10 mg/kg IV) monotherapy was administered every 12 weeks for up to 1 year. No patient had received prior PD-1 blockade, and only one received prior vemurafenib. Confirmed partial response was achieved in one (11%), stable disease in four (44%), and progressive disease in four (44%) of nine patients. Two patients achieved durable disease control of 44+ and 50+ months at the most recent follow-up without subsequent therapy. The median overall survival was not reached after a minimum 24 months of follow-up time. One-year and 2-year survival rates were 89 and 67%, respectively. Seven patients (78%) experienced grade 3 or 4 adverse events related to the study therapy, three of which were attributed to both agents. One patient discontinued the treatment due to liver and kidney toxicity. While toxicity was significant, all events were reversible, and there was no treatment-related mortality. In peripheral blood of patients with decreasing tumor burden, the ratio of the non-classical MHC-II proteins HLA-DM to HLA-DO increased 2-fold, raising the possibility of the ratio of HLA-DM:HLA-DO as a novel biomarker of response to treatment. Although the sample size was limited, combination therapy with high-dose IPI and high-dose IL-2 was feasible and associated with clinical benefit. IL-2-based compounds in combination with CTLA-4 blockade should be studied in advanced melanoma patients who fail to benefit from first-line PD-1 blockade

    Workshop on challenges, insights, and future directions for mouse and humanized models in cancer immunology and immunotherapy: a report from the associated programs of the 2016 annual meeting for the Society for Immunotherapy of cancer

    Get PDF
    Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, “Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy” as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion

    First-in-Human Clinical Trial of Oral ONC201 in Patients with Refractory Solid Tumors

    Get PDF
    Purpose: ONC201 is a small-molecule selective antagonist of the G protein–coupled receptor DRD2 that is the founding member of the imipridone class of compounds. A first-in-human phase I study of ONC201 was conducted to determine its recommended phase II dose (RP2D). Experimental Design: This open-label study treated 10 patients during dose escalation with histologically confirmed advanced solid tumors. Patients received ONC201 orally once every 3 weeks, defined as one cycle, at doses from 125 to 625 mg using an accelerated titration design. An additional 18 patients were treated at the RP2D in an expansion phase to collect additional safety, pharmacokinetic, and pharmacodynamic information. Results: No grade \u3e 1 drug-related adverse events occurred, and the RP2D was defined as 625 mg. Pharmacokinetic analysis revealed a Cmax of 1.5 to 7.5 μg/mL (∼3.9–19.4 μmol/L), mean half-life of 11.3 hours, and mean AUC of 37.7 h·μg/L. Pharmacodynamic assays demonstrated induction of caspase-cleaved keratin 18 and prolactin as serum biomarkers of apoptosis and DRD2 antagonism, respectively. No objective responses by RECIST were achieved; however, radiographic regression of several individual metastatic lesions was observed along with prolonged stable disease (\u3e 9 cycles) in prostate and endometrial cancer patients. Conclusions: ONC201 is a selective DRD2 antagonist that is well tolerated, achieves micromolar plasma concentrations, and is biologically active in advanced cancer patients when orally administered at 625 mg every 3 weeks

    Redefining tumor classification and clinical stratification through a colorectal cancer single-cell atlas

    Get PDF
    Colorectal cancer (CRC), a disease of high incidence and mortality, exhibits a large degree of inter- and intra-tumoral heterogeneity. The cellular etiology of this heterogeneity is poorly understood. Here, we generated and analyzed a single-cell transcriptome atlas of 49,859 CRC cells from 16 patients, validated with an additional 31,383 cells from an independent CRC patient cohort. We describe subclonal transcriptomic heterogeneity of CRC tumor epithelial cells, as well as discrete stromal populations of cancer-associated fibroblasts (CAFs). Within CRC CAFs, we identify the transcriptional signature of specific subtypes that significantly stratifies overall survival in more than 1,500 CRC patients with bulk transcriptomic data. We demonstrate that scRNA analysis of malignant, stromal, and immune cells exhibit a more complex picture than portrayed by bulk transcriptomic-based Consensus Molecular Subtypes (CMS) classification. By demonstrating an abundant degree of heterogeneity amongst these cell types, our work shows that CRC is best represented in a transcriptomic continuum crossing traditional classification systems boundaries. Overall, this CRC cell map provides a framework to re-evaluate CRC tumor biology with implications for clinical trial design and therapeutic development. Competing Interest Statement: The authors have declared no competing interest

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Viruses, bacteria, and parasites – oh my! a resurgence of interest in microbial-based therapy for cancer

    No full text
    Abstract As infections and cancer are two of the most common maladies affecting human beings, a concerted effort is needed to better understand their potential interactions and to further explore their use in microbial-based cancer treatments. Studies focusing on the interaction between pathogens and cancer began over 4000 years ago, but therapeutic application of pathogens has often been bypassed as other cancer therapies have gained wider interest. To many, the field of microbial-based cancer treatment may feel antiquated and already sufficiently explored. However, closer examination reveals that our current knowledge is but a series of dim reflections amongst many yet-unexplored shadows. Particularly, with our increased understanding of pathogen entry, replication, and senescence, coupled with our quickly increasing knowledge regarding cancer initiation, growth, and metastasis, and capped by our realization of the complexity and plasticity of the immune response, we are just now beginning to realize the vastness of the undiscovered area encompassing this field. At the same time, we are now uniquely poised with gained knowledge and discovered tools to join together across disciplines, uncover new positive and negative interactions between pathogens and cancer, and make important progress toward saving cancer patient lives

    Seasonal influenza vaccines differentially activate and modulate toll-like receptor expression within the tumor microenvironment

    Get PDF
    Toll-like receptors (TLRs) are well-known for their role in cancer development as well as in directing anti-tumor immunity. Because TLRs have also been implicated in the innate recognition of the influenza virus, it was of great interest to investigate the potential TLRs’ contribution to the reduction in tumor growth following intratumoral injection of an unadjuvanted influenza vaccine and the lack of antitumor response from an adjuvanted vaccine. In our previous publication, we showed that the unadjuvanted flu vaccine modulates TLR7 expression leading to anti-tumor response in a murine model of melanoma. Here, we show that the unadjuvanted and adjuvanted flu vaccines robustly stimulate different sets of TLRs, TLR3 and TLR7, and TLR4 and TLR9, respectively. In addition, the reduction in tumor growth and improved survival from intratumoral administration of the unadjuvanted vaccine was found to be diminished in TLR7-deficient mice. Finally, we observed that both vaccines have the capacity to modulate TLR expression on both innate and adaptive immune cells. Our findings add to the mechanistic understanding of the parameters that influence tumor outcomes in unadjuvanted and adjuvanted influenza vaccines

    Erratum: Oncolytic viruses: a new class of immunotherapy drugs

    No full text
    corecore