425 research outputs found
Gas chromatography of volatile organic compounds
System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis
Analysis of volatile organic compounds
An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples
Flight contaminant trace analyser. Phase 1: Chromatographic input system
The purpose of this investigation was to develop two chromatographic columns which would enable a mass spectral identification of 40 specified compounds. The columns are for use in a toxic gas analyzer, which incorporates an automated gas chromatograph-mass spectrometer. Different types of stationary phases were investigated. The columns used were of the open tubular capillary type and were made of nickel. Limitations of initial and final temperature of operation led to final development of a column which could resolve most of the compounds required. The few unresolved components are capable of resolution and identification by the mass spectrometer. The columns (182m Ni x 0.8m 0.D x 0.5mm I.D) coated with Witconal La 23, yielded in excess of 200,000 theoretical plates and completed the analysis in less than 90 minutes using a carrier gas flow rate of 4 cc/min hydrogen
Development of automated analytical capability for the early detection of diabetes mellitus
The total profile of volatile metabolites in urine of patients with diabetes mellitus was studied. Because of the drastic abnormalities in the metabolism of carbohydrates, lipids, and proteins connected with diabetes it was expected that apart from acetone further characteristic abnormalities occur in the profiles if volatile urinary metabolites in cases of diabetes mellitus. Quantitative and qualitative changes were found in these urines as compared to the urines of normal subjects
Development of and fabrication of high resolution gas chromatographic capillary columns
Gas chromatographic columns which are used in the trace gas analyzer (TGA) for the space shuttle are coated with a polyoxyethylene lauryl ether. This stationary phase is of medium polarity and has a temperature limit of 160 C. A polymer for this application which has an improved thermal stability is investigated. The use of fused silica capillary columns with specially bonded phases as well as an introduction system (on column) was also studied
Early detection of disease: The correlation of the volatile organic profiles from patients with upper respiratory infections with subjects of normal profiles
A method is described whereby a transevaporator is used for sampling 60-100 microns of aqueous sample. Volatiles are stripped from the sample either by a stream of helium and collection on a porous polymer, Tenax, or by 0.8 ml of 2-chloropropane and collected on glass beads. The volatiles are thermally desorbed into a precolumn which is connected to a capillary gas chromatographic column for analysis. The technique is shown to be reproducible and suitable for determining chromatographic profiles for a wide variety of sample types. Using a transevaporator sampling technique, the volatile profiles from 70 microns of serum were obtained by capillary column gas chromatography. The complex chromatograms were interpreted by a combination of manual and computer techniques and a two peak ratio method devised for the classification of normal and virus infected sera. Using the K-Nearest Neighbor approach, 85.7 percent of the unknown samples were classified correctly. Some preliminary results indicate the possible use of the method for the assessment of virus susceptibility
Gas Chromatograph-quadrupole Mass Spectrometric Analysis of Organic Compounds
Gas chromatography and mass spectrometry of acetonitrile, furan, pyrrole, paraffins, and other aromatic organic compounds of biological significanc
Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition
The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation
Changes in liver mitochondrial plasticity induced by brain tumor
BACKGROUND: Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. METHODS: Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU) to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H(2)Ost) were calculated from Nuclear Magnetic Resonance (NMR) measurements. RESULTS: The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. CONCLUSION: This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation
Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats
BACKGROUND: This study was undertaken to investigation the effect of Diasulin, a poly herbal drug composed of ethanolic extract of ten medicinal plants on blood glucose, plasma insulin, tissue lipid profile, and lipidperoxidation in alloxan induced diabetes. METHODS: Ethanolic extract of Diasulin a, poly herbal drug was administered orally (200 mg/kg body weight) for 30 days. The different doses of Diasulin on blood glucose and plasma insulin in diabetic rats were studied and the levels of lipid peroxides [TBARS, and Hydroperoxide] and tissue lipids [cholesterol, triglyceride, phospholipides and free fatty acids] were also estimated in alloxan induced diabetic rats. The effects were compared with glibenclamide. RESULT: Treatment with Diasulin and glibenclamide resulted in a significant reduction of blood glucose and increase in plasma insulin. Diasulin also resulted in a significant decrease in tissue lipids and lipid peroxide formation. The effect produced by Diasulin was comparable with that of glibenclamide. CONCLUSION: The decreased lipid peroxides and tissue lipids clearly showed the antihyperlipidemic and antiperoxidative effect of Diasulin apart from its antidiabetic effect
- …