137 research outputs found

    Indexing TNF-α gene expression using a gene-targeted reporter cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current cell-based drug screening technologies utilize randomly integrated reporter genes to index transcriptional activity of an endogenous gene of interest. In this context, reporter expression is controlled by known genetic elements that may only partially capture gene regulation and by unknown features of chromatin specific to the integration site. As an alternative technology, we applied highly efficient gene-targeting with recombinant adeno-associated virus to precisely integrate a luciferase reporter gene into exon 1 of the HeLa cell tumor necrosis factor-alpha (<it>TNF-α</it>) gene. Drugs known to induce <it>TNF-α </it>expression were then used to compare the authenticity of gene-targeted and randomly integrated transcriptional reporters.</p> <p>Results</p> <p><it>TNF-α</it>-targeted reporter activity reflected endogenous <it>TNF-α </it>mRNA expression, whereas randomly integrated <it>TNF-α </it>reporter lines gave variable expression in response to transcriptional and epigenetic regulators. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), currently used in cancer clinical trials to induce <it>TNF-α </it>gene transcription, was only effective at inducing reporter expression from <it>TNF-α </it>gene-targeted cells.</p> <p>Conclusion</p> <p>We conclude that gene-targeted reporter cell lines provide predictive indexing of gene transcription for drug discovery.</p

    Replication of an Autonomous Human Parvovirus in Non-dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways

    Get PDF
    Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase–related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identified that two Y-family DNA polymerases, Pol η and Pol κ, are involved in HBoV1 genome amplification. Overall, we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the cellular DNA damage and repair pathways

    The YPLGVG sequence of the Nipah virus matrix protein is required for budding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Nipah virus </it>(NiV) is a recently emerged paramyxovirus capable of causing fatal disease in a broad range of mammalian hosts, including humans. Together with <it>Hendra virus </it>(HeV), they comprise the genus <it>Henipavirus </it>in the family <it>Paramyxoviridae</it>. Recombinant expression systems have played a crucial role in studying the cell biology of these Biosafety Level-4 restricted viruses. <it>Henipavirus </it>assembly and budding occurs at the plasma membrane, although the details of this process remain poorly understood. Multivesicular body (MVB) proteins have been found to play a role in the budding of several enveloped viruses, including some paramyxoviruses, and the recruitment of MVB proteins by viral proteins possessing late budding domains (L-domains) has become an important concept in the viral budding process. Previously we developed a system for producing NiV virus-like particles (VLPs) and demonstrated that the matrix (M) protein possessed an intrinsic budding ability and played a major role in assembly. Here, we have used this system to further explore the budding process by analyzing elements within the M protein that are critical for particle release.</p> <p>Results</p> <p>Using rationally targeted site-directed mutagenesis we show that a NiV M sequence YPLGVG is required for M budding and that mutation or deletion of the sequence abrogates budding ability. Replacement of the native and overlapping Ebola VP40 L-domains with the NiV sequence failed to rescue VP40 budding; however, it did induce the cellular morphology of extensive filamentous projection consistent with wild-type VP40-expressing cells. Cells expressing wild-type NiV M also displayed this morphology, which was dependent on the YPLGVG sequence, and deletion of the sequence also resulted in nuclear localization of M. Dominant-negative VPS4 proteins had no effect on NiV M budding, suggesting that unlike other viruses such as Ebola, NiV M accomplishes budding independent of MVB cellular proteins.</p> <p>Conclusion</p> <p>These data indicate that the YPLGVG motif within the NiV M protein plays an important role in M budding; however, involvement of any specific components of the cellular MVB sorting pathway in henipavirus budding remains to be demonstrated. Further investigation of henipavirus assembly and budding may yet reveal a novel mechanism(s) of viral assembly and release that could be applicable to other enveloped viruses or have therapeutic implications.</p

    Compositional Mining of Multiple Object API Protocols through State Abstraction

    Get PDF
    API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments

    Establishment of a Reverse Genetics System for Studying Human Bocavirus in Human Airway Epithelia

    Get PDF
    Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis.This work was supported by PHS R21 grant AI085236 and PHS R01 grant AI070723 from NIAID (J Qiu) and PHS R01 grant HL108902 from NHLBI (J Engelhardt)

    Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy

    Get PDF
    Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies

    The influence of thermophysical properties of frozen soil on the temperature of the cast-in-place concrete pile in a negative temperature environment

    No full text
    Thermophysical properties of frozen soil have a great influence on the quality of cast-in-place concrete piles. In this paper, the embedded concrete temperature monitoring system is used to test the variation law of the concrete temperature during the construction of the bored pile. Thermophysical properties of permafrost around piles are tested. Based on the theory of three-phase unsteady heat conduction of soil, the influence of specific heat capacity, thermal conductivity, thermal diffusivity, and latent heat of phase transformation on the temperature change of a concrete pile is systematically studied. The thermal parameter is obtained which exerts the most significant influence on the temperature field. According to the influence degree of frozen soil on pile temperature, the order from high to low is thermal conductivity, thermal diffusivity, latent heat of phase change, and specific heat capacity. The changes in pile wall temperature caused by the change of these properties range between 2.60–10.97◦C, 1.49– 9.39◦C, 2.16–2.36◦C, and 0.24–3.45◦C, respectively. The change percentages of parameters vary between 35.77–47.12%, 12.22–40.20%, 12.46–32.25%, and 3.83–20.31%, respectively. Therefore, when designing and constructing concrete foundation piles, the influence of the thermal conductivity of frozen soil on concrete pile temperature should be considered first. The differences between the simulated and measured temperature along the concrete pile in the frozen soil varying with the respective thermal properties are: –2.99– 7.98◦C, –1.89–4.99◦C, –1.20–1.99◦C, and –1.76–1.27◦C. Polyurethane foam and other materials with small thermal conductivity can be added around the pile to achieve pile insulation

    Variation of Ground Temperature along the Stratum Depth in Ice-rich Tundra of Hinggan Mountains Region, NE China

    No full text
    A pile foundation in a permafrost region is in a negative-temperature environment, so concrete is affected by the negative temperature of the surrounding soil. It not only affects the formation of concrete strength but also leads to engineering quality accidents in serious cases. With the support of the two permafrost bridge projects of the national highway from Beijing to Mohe in the Greater Khingan Mountains region, a systematic remote dynamic monitoring method for ground temperature in ice-rich tundra is proposed. Based on the actual measurement of temperature at different strata depths and the comprehensive consideration of surface temperature, terrestrial heat flux and other parameters, the ground temperature profile evolution in relation to depth in Greater Khingan was established. The theoretical ground temperature profile curve is similar to the measured profile. The results show that the variation trends of ground temperatures in relation to the strata depth at different monitoring sites is similar, and all show seasonal variation: From June to November, the ground temperature at different depths tends to be constant. From December to May, the ground temperature at any depth within the range of 0 to 5.5 m follows the curve of the cosine function. Below 5.5 m, the earth temperature no longer varies with depth. The research results can be used as reference for pile foundation construction in a negative-temperature environment in ice-rich tundra

    Establishment of a Recombinant AAV2/HBoV1 Vector Production System in Insect Cells

    No full text
    We have previously developed an rAAV2/HBoV1 vector in which a recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged into a human bocavirus 1 (HBoV1) capsid. Recently, the production of rAAV2/HBoV1 in human embryonic kidney (HEK) 293 cells has been greatly improved in the absence of any HBoV1 nonstructural proteins (NS). This NS-free production system yields over 16-fold more vectors than the original production system that necessitates NS expression. The production of rAAV with infection of baculovirus expression vector (BEV) in the suspension culture of Sf9 insect cells is highly efficient and scalable. Since the replication of the rAAV2 genome in the BEV system is well established, we aimed to develop a BEV system to produce the rAAV2/HBoV1 vector in Sf9 cells. We optimized the usage of translation initiation signals of the HBoV1 capsid proteins (Cap), and constructed a BEV Bac-AAV2Rep-HBoV1Cap, which expresses the AAV2 Rep78 and Rep52 as well as the HBoV1 VP1, VP2, and VP3 at the appropriate ratios. We found that it is sufficient as a trans helper to the production of rAAV2/HBoV1 in Sf9 cells that were co-infected with the transfer Bac-AAV2ITR-GFP-luc that carried a 5.4-kb oversized rAAV2 genome with dual reporters. Further study found that incorporation of an HBoV1 small NS, NP1, in the system maximized the viral DNA replication and thus the rAAV2/HBoV1 vector production at a level similar to that of the rAAV2 vector in Sf9 cells. However, the transduction potency of the rAAV2/HBoV1 vector produced from BEV-infected Sf9 cells was 5&ndash;7-fold lower in polarized human airway epithelia than that packaged in HEK293 cells. Transmission electron microscopy analysis found that the vector produced in Sf9 cells had a high percentage of empty capsids, suggesting the pseudopackage of the rAAV2 genome in HBoV1 capsid is not as efficient as in the capsids of AAV2. Nevertheless, our study demonstrated that the rAAV2/HBoV1 can be produced in insect cells with BEVs at a comparable yield to rAAV, and that the highly efficient expression of the HBoV1 capsid proteins warrants further optimization
    • …
    corecore