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Abstract

Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to
manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example
of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of
human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to
develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we
examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at
various stages of disease progression in affected organs. We then discuss the progress in developing recom-
binant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung
and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey
the potential of these new animal models for developing CF gene and cell therapies.

Introduction

Cystic fibrosis (CF) is a common lethal autosomal-
recessive disorder caused by mutations in a single gene

encoding a protein, the cystic fibrosis transmembrane con-
ductance regulator (CFTR).1–3 CFTR is an anion channel,
located in the apical membrane of epithelial cells, that
conducts chloride and bicarbonate across the cell mem-
brane.4,5 CF affects at least 70,000 people worldwide and
almost 2000 sequence variations have been identified in the
CFTR gene.6,7 The most common CFTR mutant is the de-
letion of a nucleotide triplet that results in the loss of a
phenylalanine residue at position 508 of the CFTR protein
(DF508CFTR). Approximately 70% of patients with CF
carry two copies of the DF508 mutation, whereas 90% carry
one.8–10 CFTR gene mutations result in a wide range of
organ-level dysfunction, including severe lung infections,
pancreatic failure, intestinal obstruction, male infertility,
and nutritional deficits.11,12 A recurrent theme in CF organ

disease is thick secretions and reduced pH caused by im-
paired bicarbonate transport.

Although CF affects multiple organs, lung failure due to
chronic bacterial infections and inflammation is respon-
sible for most morbidity and mortality.13 Because CF is a
monogenic fatal disorder, and the airway epithelium is an
easily accessible target for gene therapy vectors, CF lung
disease is an ideal genetic disorder for treatment by gene
therapy.14 Twenty-five clinical trials for CF lung disease
have been implemented in approximately 450 patients with
CF since the mid-1990s,15 including those using recombi-
nant adenovirus vector (rAD) targeting the nasal and bron-
chial epithelium16–22; recombinant adeno-associated virus
(rAAV) with aerosolized administration to nose, sinuses,
and lungs23–27; as well as cationic liposome or formulated
DNA nanoparticles for nonviral CFTR gene transfer.28–31

Despite the success of preclinical studies demonstrating
efficacy of these recombinant vectors to correct CFTR
channel defects, using ex vivo and in vitro airway model
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systems, all CF gene therapy trials to date have failed either
to meet molecular end points or to improve lung function in
patients with CF.32–34 These failures are likely due to sev-
eral issues, including (1) the lack of efficient gene transfer to
cellular targets required to correct in vivo CFTR function,35

(2) the animal models in which various preclinical vectors
were tested,36–39 and (3) previously unknown intracellular
and extracellular barriers that limit viral transduction.40–43

Basic research on airway biology has found that gene de-
livery to airway epithelial cells in vivo must overcome a
number of intracellular and extracellular barriers that physi-
cally or biologically hinder the delivery of DNA or viral vec-
tors to the nucleus,40,41,44,45 or target clearance of the vectors or
infected cells through host immune surveillance.46–51 Im-
portantly, lung infection and inflammation in CF lung disease
enhance these barriers. Challenges surrounding the physical
barriers in the airway of a patient with CF, such as the thick
layer of airway mucus secretion and the mechanisms of mu-
cociliary clearance, were not completely recognized when the
early CF lung gene therapy trials were conducted. Of note, the
gene transfer agents used in these early trials were also not fully
validated at that time42,43 because of the lack of an animal
model system that fully recapitulates the pathological condi-
tion of human CF lung disease.

Research on vector biology and virology has also re-
vealed some inherent weaknesses that required solutions
before applications in CFTR gene therapy. For example, in
the initial rAAV2 clinical trials, the relative small package
capacity (<5.0 kb)52 of the AAV genome necessitated the
use of a weak cryptic promoter in the AAV2 inverted ter-
minal repeat (ITR) to enable packaging of the 4.44-kb CFTR
genome.24,53 It was also not known in early trials that
rAAV2 has relatively high airway tropism in the preclinical
rhesus monkey model54 in contrast to human airway.36,38

Subsequent studies demonstrated that rAAV2 has low tro-
pism for transduction from the apical surface of the human
airway epithelium40 and has impaired proteasome-dependent
intracellular processing and trafficking to the nucleus for
productive transduction.41,55,56 A major limitation of first-
generation rAD vectors is the leaky expression of vector-
encoded viral proteins that elicit strong humoral and cellular
immune responses.57,58 In addition, it is now known that the
type 5 rAD receptor (coxsackievirus–adenovirus receptor) is
not presented on the apical surface of human airway epithe-
lium,59,60 despite the fact that type 5 rAD highly transduced
the murine airways used in preclinical studies.50,61 In con-
trast, nonvirus-mediated approaches for CFTR delivery lack
many of the limitations of viral vectors, including immuno-
logical barriers and tropism-specific features defined by
species-specific receptors. However, liposome-plasmid based
formulations are generally much less efficient at transfecting
airway epithelium than viral vectors.62,63

Two larger animal models of cystic fibrosis in the ferret
and pig have been generated by either disruption of the CFTR
gene or introduction of the DF508 CFTR mutation.64,65 Both
CF ferrets and pigs spontaneously develop the lung disease
phenotype, as well as pancreatic, gallbladder, and intestinal
disease.66,67 These models will be useful to test CF gene
therapy in the context of disease that reproduces the human
condition. In this review, we first briefly review the history of
the development of these CF animal models and then describe
their disease phenotypes at the organ level, with a focus on

similarities and differences in organ phenotypes that will
differentiate the gene therapy approaches that can be tested in
the various affected organs. We then review the progress of
using viral vectors to deliver foreign genes to the lung and
pancreas in ferrets and pigs, which are two key target organs
for future CF gene therapy efforts. We also discuss the
prospects and practical issues of using the CF ferret and pig
models for the development of CF gene therapies.

The Development of CF Animal Models

Mouse models of CF have been invaluable tools in the
study of CFTR physiology in multiple organs for more than
two decades.68 More recently, the development of condi-
tional CFTR knockout mice69 has aided in dissecting novel
CFTR functions in myeloid-derived cells and T cells.70,71

However, major limitations of CF mouse models are the lack
of spontaneous lung infections and pancreatic disease ob-
served in patients with CF.66,67 Several biologic reasons may
account for the lack of pathology in these organs of CF mice.
From an anatomical perspective, airway submucosal glands,
which express abundant CFTR in human cartilaginous air-
ways72 and play important roles in lung innate immunity
through the secretion of antimicrobials,73,74 are present only
in the proximal trachea of mice.75 From an ion channel per-
spective, alternative non-CFTR, cAMP-activated, chloride
channel activity appears to compensate for the lack of CFTR
in the trachea39,76 and pancreas in CF mice.76–78

In contrast to mice, ferrets and pigs share a high level of
similarity in airway cytoarchitecture with humans79–82 and
have a similar composition of chloride channels in the airway.83

The use of the ferret as an animal model for hypersecretory
diseases such as CF and chronic bronchitis was first suggested in
1982, based on the properties of mucus, goblet cells, and sub-
mucosal glands throughout the tracheobronchial tree.84 How-
ever, until somatic cell nuclear transfer (SCNT) cloning of
mammals was first demonstrated in 1996 with the cloning of the
sheep named Dolly,85 this hypothesis could not be tested. The
approach of combining SCNT with rAAV-mediated gene tar-
geting in primary fibroblasts led to the successful generation of
CF ferret64 and pig models65 in 2008.

Multiorgan Disease in CF Ferrets and Pigs
Is Similar to the Human CF Phenotype

Although the lung is the primary organ that leads to
mortality in CF, CF is a multiorgan disease for which dis-
ease in secondary organs such as the gut and pancreas can
influence the health of the lung. For instance, CF-related
diabetes and malnutrition are two examples by which pan-
creatic and intestinal health can negatively impact lung
health in patients with CF. Thus, each of these organs is a
potential target for gene therapy. Disease phenotypes in the
CF pig and ferret have subtle differences in disease severity
and time of onset. Hence, these two models present unique
opportunities for testing gene therapies at various stages of
CF organ disease.

Intestinal disease

Whereas only 15% of infants with CF suffer from me-
conium ileus (MI) at birth,86,87 MI occurs in 100% of CFTR
knockout piglets88,89 and 75% of CFTR knockout ferret
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kits.90 The phenotype of MI in CF ferret kits and piglets is
extremely similar to that which occurs in CF infants, in-
cluding intestinal atresia, diverticulosis, and microcolon.
Although intestinal surgery in newborn CF ferrets has not
been possible due to size, it has been successfully used in
CF pigs to rescue newborn animals. Malnutrition and distal
intestinal obstruction syndrome in older CF ferrets and pigs
is similar to that observed in patients with CF.91,92 The
creation of gut-corrected CFTR knockout ferrets and pigs
harboring a wild-type CFTR transgene under the direction
of the fatty acid-binding promoter will be useful models
with reduced intestinal pathologies.90,92 Furthermore, gut-
corrected CFTR knockout models provide the opportunity to
test gene therapies without the potential complication of
developing cellular immunity against the CFTR transgene.

Pancreatic disease

At birth, only 3% of patients with CF have severe lesions
associated with exocrine pancreatic destruction (EPD),
whereas 72–92% infants demonstrate mild lesions associ-
ated with exocrine acinar duct dilatation (ADD).93,94 How-
ever, damage to the pancreas continues after birth and
ultimately leads to complete destruction of pancreatic exo-
crine function in most patients with CF, with 82% of adult
patients with CF suffering pancreatic insufficiency. In-
flammatory damage to the pancreas of CFTR knockout pigs
begins in utero on embryonic day 83 (pigs have a 114-day
gestation) and 100% of CF pigs have EPD at birth.95,96 By
contrast, newborn CFTR knockout ferrets exhibit relatively
mild histopathology of the exocrine pancreas characterized
by ADD similar to that seen in CF infants.90,97 Interestingly,
a small subset of CFTR knockout ferrets (<1%) demonstrates
pancreatic sufficiency throughout life with normal weight
gain and only minor exocrine damage.91 These findings
suggest that pancreatic modifier genes exist in CF ferrets, as
has also been suggested in patients with CF. However, the
exocrine pancreas of most CFTR knockout ferrets undergoes
rapid destruction over the first month of life, leading to ex-
tensive fibrosis, loss of exocrine pancreas, islet remodeling,
and diabetes.91,97 Both CF ferrets and pigs also show abnor-
malities in insulin secretion at birth,97,98 suggesting that ab-
normal islet function initiates early in CF. Because CF ferret
and pig models have differing degrees of exocrine disease
severity at birth, they present opportunities to test CF gene
therapies that target early and late disease processes, re-
spectively. Furthermore, both models may have unique util-
ities for testing gene therapies for CF-related diabetes.

Gallbladder and hepatic disease

Biliary cirrhosis and gallbladder disease are observed in
15–30% of patients with CF.11,99,100 Both CF pigs and fer-
rets develop moderate hepatic lesions, including biliary
cirrhosis, ductal hyperplasia, steatosis, and fibrosis.88,89,91

Newborn CF ferrets also have abnormally elevated plasma
alanine aminotransferase and bilirubin levels,90 similar to
those observed in CF infants,101 and suggestive of early
liver disease. Like the pancreas, gallbladder disease in CF
ferrets and pigs progresses at different rates, with disease in
the CF pig beginning in utero and in the CF ferret beginning
postnatally. Microgallbladder with thick mucus secretions is
found in 100% of CF piglets at birth,88,89 whereas the

newborn CF ferret gallbladder is histologically normal de-
spite the electrophysiologic absence of cAMP-mediated
chloride currents.90,102 However, with age, the majority of
CF ferrets develop gallbladder disease characterized by
cystic mucosal hyperplasia as seen in humans.91 The liver
represents a tractable target for gene therapy in both CF pigs
and ferrets, whereas gallbladder-directed gene therapy
would likely be limited to CF ferrets because of the extent of
disease observed in CF pigs at birth.

Lung and airway diseases

The CF lung is the primary target for gene therapy, as it is
the most severely affected organ in CF. Both CF pig and
ferret models develop spontaneous lung infections similar to
that in human patients with CF. Although CF pigs lack lung
inflammation at birth, they fail to eradicate bacteria and
eventually develop lung disease within the first few months
of life characterized by airway inflammation, remodeling,
mucus accumulation, and infection.88,103 CF ferrets also have
a lung bacterial eradication defect, but demonstrate an ab-
normally elevated inflammatory response at birth.104 Pro-
teomics analysis of bronchoalveolar fluid from sterile
Caesarean-sectioned and natural-born CF and non-CF ferrets
suggests that alterations to lung immunity may begin before
birth in CF kits and prime the lung for hyperinflammation
after the first bacterial exposure during birth.104 The onset of
lung infections in CF ferrets is rapid and if animals are not
reared on antibiotics, they succumb to polymicrobial lung
infections within the first week of life.90 However, improved
methods of rearing CF ferrets on multiple antibiotics from
birth to 6 months of age have allowed for the study of a more
slowly progressive lung disease that recapitulates human CF
lung disease.105 Both CF pig and ferret models represent
unique opportunities to evaluate gene therapies to the CF
lung. Gene therapy end points to the neonatal CF ferret lung
may also benefit from methods of closely monitored weight
gain, for which small decreases have been demonstrated to be
indicative of the onset of a lung infection (Fig. 1).105

Progress in Viral Vector Development
for CFTR Gene Transfer

Over the last two decades, a significant effort has been
made to solve the challenges encountered in early CF gene
therapy clinical trials. Areas of focus have included the
identification of viral vectors with the appropriate tropisms
to infect the apical membrane of polarized human airway
epithelia, understanding the intracellular barriers that limit
viral transduction, and improving vector design to both limit
immune recognition and allow for packaging of the large
CFTR cDNA. Here we review some of the most significant
advances in viral vectors for CF gene therapy.

Recombinant adenoviral vectors

The major limitation of recombinant adenoviruses for
gene therapy is the immune recognition and T cell-mediated
responses that lead to clearance of virally infected cells.
Next-generation rAD vectors, also called helper-dependent
adenoviral (HD-AD) vectors, have been developed.106 HD-AD
vectors have all viral protein-coding sequences deleted, which
significantly reduces the host immune response.107,108 Thus,
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HD-AD confers longer term transgene expression in mouse
lung and can be readministered through transient immuno-
suppression in mice.109 Viral vector-mediated airway gene
transfer has also been greatly improved by pharmacological
interventions. Mucolytic agents have been used to break down
the mucus layer and improve rAD transduction in mice.110 A
variety of pharmacological agents, such as sodium caprate,111

ethylene glycol tetraacetic acid,59 and lysophosphatidyl-
cholines,112 have also been used to transiently open the tight
junction of airway epithelium, allowing access of rAD to the
coxsackievirus–adenovirus receptor on the basolateral mem-
brane of the airway epithelium.

Recombinant adeno-associated viral vectors

New rAAV vector serotypes, such as rAAV1113,114 and
rAAV6,115 have demonstrated improved transduction effi-
ciency after apical infection of polarized human airway
epithelium compared with the rAAV2 vector used in initial
clinical trials. Other rAAV capsid variants with enhanced
tropism from the apical membrane of human airway epi-
thelial cells were obtained by directed evolution in human
airway cell cultures116,117 or through genetic modification of
the AAV6115 and AAV2 capsid.118 Other advances have
focused on vector issues pertaining to the small packaging
capacity of rAAV genomes. In this regard, shortened CFTR
minigenes have allowed for the incorporation of stronger
promoter/enhancer elements with rAAV vectors.119 These
have included deletion of 52 amino acid residues (156 bp)
from the R-domain to create a CFTRDR protein that retains
*80% Cl - channel activity in comparison with the full-
length CFTR.120 In addition, a novel cross-genus hybrid
parvoviral vector was developed that packages the rAAV2

genome into human bocavirus type 1 (HBoV1) capsids,
a human respiratory virus that naturally infects human air-
way epithelium in infancy.121 rAAV2/HBoV1 vectors have
greater apical transduction of polarized human airway epi-
thelium than rAAV1 vectors. Furthermore, rAAV2/HBoV1
vectors retain 20% greater packaging capacity than rAAV
vectors because of the larger HBoV1 virion. The rAAV2/
HBoV1 vector harboring a full-length CFTR expression
cassette driven by the strong CBA promoter (a combination
of the cytomegalovirus immediate-early [CMV IE] enhancer
and chicken b-actin promoter) has been shown to efficiently
correct CFTR-mediated chloride currents in CF human
airway epithelium after apical infection.121 Advances in our
understanding of the intracellular barriers to rAAV trans-
duction have also led to pharmacologic methods of en-
hancing transduction from the apical membrane of polarized
airway epithelia. The use of proteasome inhibitors during or
after infection can dramatically increase apical rAAV
transduction of human airway epithelial by enhancing nu-
clear viral translocation.41,122

Recombinant lentiviral vectors

Lentiviral vectors are able to transduce dividing and
nondividing cells, conferring long-term expression through
the integration of a transgene expression cassette into host
chromosomal DNA.123,124 The most commonly used lenti-
viral vector is derived from the human immunodeficiency
virus (HIV),125 but in the context of lung gene transfer feline
(FIV)126 and simian (SIV)127 immunodeficiency viruses,
and equine infectious anemia virus (EIAV),128 have also
been studied. These viruses do not have a natural tropism for
the airway, and lentiviral vectors commonly pseudotyped

FIG. 1. Weight monitoring as a surrogate for lung infections in young cystic fibrosis (CF) ferrets. The weights of kits were
measured every 6 hr and were compared between paired CF and non-CF kits born to the same jill. (A) Typical patterns of total
daily weight gain for CF kits (blue bars) and non-CF kits (red bars). (B) The rolling average 6-hr delta weight gain over a 24-hr
period (calculated as the average of five measurements over a 24-hr period) is plotted for a CF (blue bars)/non-CF (red bars)
pair. A decline in this rolling average indicated early lung infection (yellow shaded region), and thus a second antibiotic
(Baytril) was applied (at arrowhead). (C) A second set of CF and non-CF animals reared on Zosyn from birth, given Baytril on
day 12 because of weight loss in the CF animal, and then removed from Baytril on day 15. The CF animal succumbed to lung
infection at 19 days. (D and E) Lung histology and bacterial colony-forming units (CFU) in lung lysates from the 19-day-old
(D) non-CF control and (E) CF animal shown in (C). (A) and (B) are reproduced with permission from Sun et al.105
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with an envelope glycoprotein from the vesicular stomatitis
virus (VSV-G) are relatively inefficient at transducing polar-
ized human airway epithelial cultures from the apical mem-
brane.129–131 However, promising new advances in developing
retargeted lentiviral vectors for airway transduction have been
made. Lentiviral vectors pseudotyped with GP64 glycoprotein
from baculovirus of Autographa californica,131 or M2 envelop
protein and hemagglutinin (HA) from influenza virus,128

demonstrated fairly high vector production yields and apical
tropism to transduce polarized airway epithelial cultures
in vitro and mouse airway epithelium in vivo. Similarly, SIV
vector pseudotyped with Sendai virus hemagglutinin-neur-
aminidase (HN) and fusion (F) protein can efficiently transduce
polarized human airway epithelia from the apical membrane
and also efficiently transduces mouse nasal epithelial cells
in vivo, resulting in transgene expression sustained for periods
far beyond the proposed life span of differentiated airway ep-
ithelial cells.132 Additional studies with lentiviruses demon-
strate the feasibility of repeated administration to the respiratory
tract without blocking antibody immune responses.133,134

Lung and Pancreatic Gene Therapy in Ferrets and Pigs

Before testing CFTR-mediated lung and pancreatic gene
therapies in the CF ferret and pig models, it is necessary first
to understand the optimal vector design for each species.

Although efficacy studies in the CF models have yet to be
completed, there has been a significant amount of research
to aid in vector choice. Here we present both published and
unpublished data that are being used to build a framework
for future studies of CFTR gene delivery to important af-
fected organs in these two animal CF models.

Gene transfer to ferret and pig airways,
using replication-defective adenovirus

HD-AD vectors have been tested for their ability to de-
liver reporter genes to the airways of both normal pigs and
ferrets. The HD-AD has been tested in 3- to 4-day-old
newborn ferrets (*10–13 g body weight) by intratracheal
injection of 3 · 1011 particles of HD-AD virus formulated
with lysophosphatidylcholine and DEAE-dextran in a vol-
ume of 40 ll. The vector harbored a nuclear-targeted b-
galactosidase reporter gene (nt-LacZ) driven by the human
cytokeratin 18 (K18) promoter, which confers conducting
airway epithelial cell-specific transgene expression. At 8 days
postinfection, reporter LacZ expression was seen in the sur-
face airway epithelial cells of intralobar conducting airways
with little expression in alveolar regions of the lung (Fig. 2A–
E). Similar HD-AD vectors carrying an K18 promoter driv-
ing nt-LacZ or human CFTR cDNA were delivered to 25- to
30-kg pigs as an aerosol under bronchoscopic guidance.135

FIG. 2. Gene transfer in the airways of 3- to 6-day-old ferrets. (A–E) Airways after intratracheal delivery of (A) vehicle or
(B–E) helper-dependent Ad5 (i.e., gutted adenovirus) with X-Gal staining 8 days postinfection. This vector expresses nt-LacZ
under the control of the K18 promoter. (A–D) are sections and (E) is a whole-mount preparation. The transgene is expressed
predominantly in the small airways. (F–J) Airways after intratracheal delivery of (F) vehicle or (G–J) equine infectious
anemia virus (EIAV) pseudotyped with influenza A virus subtype H7 hemagglutinin (HA) with X-Gal staining 8 days
postinfection. This EIAV vector expresses nt-LacZ under the control of the CBA promoter. (F–H) are sections and (I and J) are
whole-mount preparations. The transgene is expressed in the large and small airways as well as in alveolar regions. (K–N)
Newborn ferrets were infected with an RSVmCherry-encoding FIV-GP64 virus. mCherry expression (red) was observed
almost exclusively in bronchioles (Br) at 7 days postinfection. (L) shows only the mCherry channel of the boxed region in (K).
(M) is the bright-field image of the fluorescence panel in (N). (K) and (N) are counterstained with DAPI to mark nuclei.
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Aerosol delivery of 5 · 1012 particles of HD-AD vector for-
mulated with 0.01% lysophosphatidylcholine in 5 ml was
directed to the left lung through the left mainstem bronchus.
One week after infection, X-Gal staining revealed strong
LacZ reporter expression in the surface epithelium of the
segmental bronchus, bronchioles, and respiratory bronchioles
from the infected left lung, whereas the right lung lacked
reporter expression. Histological examination of tissue sec-
tions demonstrated that *20% of the epithelial cells ex-
pressed LacZ transgene in the infected lobes. Importantly,
LacZ expression was also found in the airway submucosal
glands, which are considered an important target for CF lung
gene therapy. HD-AD virus encoding the human CFTR gene
also demonstrated expression throughout the infected lobes
by real-time RT-PCR for the exogenous hCFTR mRNA and
immunostaining using anti-hCFTR antibody for expression of
the exogenous hCFTR protein. Although acute inflammatory
cytokine and chemokine production was observed after HD-
AD administration, as well as the infiltration of neutrophils
into the pig airway epithelium 24 hr after vector delivery,
there was no systemic toxicity observed after aerosol delivery
of the HD-AD vectors, and no significant difference in in-
flammatory cell infiltration in the bronchi and alveolar re-
gions before and after 1 week of vector delivery. The mRNA
levels for cytokines and chemokines from the bronch-
oalveolar lavage cells and the lung tissue were also not
significantly different on day 7 between the infected and
noninfected animals.

Gene transfer to ferret and pig airways, using rAAV

Studies evaluating the use of rAAV for gene transfer to
the ferret and pig lung have also demonstrated the feasibility
of this vector for use in gene therapy in the CF animal
models. Studies comparing rAAV1, rAAV2, and rAAV5
serotypes for their ability to transduce polarized human, pig,
and ferret airway epithelial cultures suggest that these three
species share a similar apical tropism for these serotypes,
with rAAV2/1 being the most efficient.37 Our studies have
found that the newborn ferret airway is resistant to rAAV
transduction by different serotypes including types 1, 2, 6,
and 9 (our unpublished data). However, in vivo transduction
with rAAV2/1 was significantly enhanced by the addition of
200 lM doxorubicin in the vector inoculum.136 When the
infections were conducted in 5- and 12-day-old ferrets,
transgene expression was observed in the tracheobron-
chial epithelium, bronchioles, and scattered alveolar cells,
whereas transgene expression was significantly lower in 18-
day-old animals and undetectable in adult animals.136 In-
terestingly, the resistance to rAAV2/1 transduction in older
ferrets appears to be due, at least in part, to the increased
abundance of a secreted inhibitory factor(s) in the ferret
airway. The identity of the secreted inhibitory factor(s) re-
mains unknown; however, resistance of the airway to
rAAV1 infection appears to develop at 18 days after birth, a
time point when submucosal glands are nearing a mature
state in ferrets. Nevertheless, our studies demonstrated that
rAAV2/1 may be a suitable viral vector to test gene therapy
to the lung of neonatal CF ferrets. Notably, rAAV2/1 is also
one of the most efficient natural serotypes of rAAV for
transduction of polarized human airway epithelial cultures
from the apical membrane.

Capsid-directed evolution of rAAV in polarized human
airway epithelial cultures has yielded some AAV variants
with better apical tropism to the human airway.116 This
strategy was also used to direct the evolution of an AAV
capsid library in pig airway in vivo and isolated a new AAV
variant, AAV2H22.137 The capsid sequence of this variant
was identical to that of AAV2 except for five mutations of
amino acid residues as E67A, S207G, Q598L, I648V, and
V708I. A new rAAV vector generated by pseudotyping
rAAV2 genome into the AAV2H22 capsid demonstrated its
ability to selectively and efficiently transduce pig airway
epithelium in vitro and in vivo. This vector will be useful in
delivery of the porcine CFTR gene to test gene therapy for
lung disease in the CF pigs.

Gene transfer to ferret and pig airways,
using lentiviral vectors

Studies comparing HIV with FIV lentiviral vectors in
well-differentiated human and pig airway epithelia screened
a number of envelope glycoproteins and identified baculo-
virus protein GP64 as one of the most efficient pseudotypes
for transduction from the apical membrane by both HIV and
FIV vectors.129 Furthermore, this study also demonstrated
that FIV-GP64 recombinant virus was effective at trans-
ducing the airways of pigs in vivo. We tested the efficiency
of two lentiviral vectors for gene transfer to the newborn
ferret lung, including EIAV pseudotyped with hemaggluti-
nin (HA) from avian influenza A virus138 and FIV pseudo-
typed with GP64.133 In vivo airway infection was conducted
by intratracheal injection of 40 ll containing 7.5 · 106 in-
fectious units (IU) of EIAV/HA-H7.CBAntLacZ into 3-day-
old ferrets. Eight days after infection, tracheas and lungs
were harvested and stained with X-Gal (Fig. 2F–J). Grossly,
significant transgene expression was seen in all lobes and
the large and small conducting airways of the lungs, but not
in the trachea. Histologic analysis demonstrated that EIAV/
HA-H7 virus efficiently transduced bronchi, bronchioles,
and alveoli, ranging from *10 to 70% of cells in these
regions (Fig. 2F–J). Similarly, infection of 6-day-old ferrets
with 1 · 108 IU (100 ll) of an RSVmCherry-encoding GP64-
pseudotyped FIV vector efficiently transduced intralobar
small airways at 7 days postinfection (Fig. 2K–N). These
results suggested the HA-H7- and/or GP64-pseudotyped
lentiviral vectors may be useful in testing lung gene thera-
pies in the CF ferret and pig models.

Gene transfer to the pancreas of ferrets and pigs

The pancreas represents another important target organ
for CF gene therapy. Several routes of viral gene delivery to
the pancreas have been tested in animal models including
direct pancreas injection, systemic delivery with temporary
clamping of portal vein and hepatic artery, retrograde pan-
creaticobiliary duct delivery, intraperitoneal delivery, and
intravenous delivery.139–142

A minimally invasive procedure to deliver rAAV to the
pancreas via the celiac artery, the vessel that supplies major
branches to the pancreas, was developed and tested in
newborn pigs.143 In this study, the celiac artery was used for
vector delivery within 24 hr of birth and accessed via um-
bilical artery catheterization. One month after delivering
2 · 1012 particles of rAAV9-EGFP through the celiac artery,
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reporter expression was found in pancreatic ducts, including
the intercalated and intralobular ducts; these ducts express
the highest levels of CFTR in pig and human pancreatic
tissue. rAAV2/9 also transduced pancreatic polypeptide
(PP) cells of the islets, but not a, b, or d cells. Celiac artery
delivery of rAAV2/9 also transduced a number of other
organs, as indexed by enhanced green fluorescent protein
(EGFP) mRNA, including the liver, gallbladder, heart,
spleen, salivary glands, trachea, and lung, but not stomach
or duodenum. Notably, systemic venous delivery of rAAV2/
9 did not transduce the pancreas in newborn pigs.143

We have also tested rAAV transduction of the pancreas in
newborn ferrets. Because newborn ferrets are much smaller
than piglets, celiac artery or umbilical artery cannulation is
not feasible. However, it was previously reported that in-
traperitoneal injection of rAAV2/6 and rAAV2/8 can ef-
fectively transduce the pancreatic acinar cells and islets in
mice.142 We adopted this method and delivered 2 · 1011

particles of various serotypes of rAAV vectors (rAAV1, 2,
5, 8, and 9) to 3-day-old newborn ferrets by intraperitoneal
injection. Western blot analysis of EGFP expression in
various organs demonstrated that rAAV2/8 effectively de-
livered EGFP to the pancreas and liver (Fig. 3A). rAAV2/5
was the next most effective serotype at pancreatic gene
delivery and demonstrated no hepatic gene transfer. Im-
munofluorescence staining for EGFP and insulin demon-
strated that neither rAAV2/5 nor rAAV2/8 effectively
transduced b cells of the islets (Fig. 3B). These findings
suggest that the AAV8 serotype vectors may be most suit-
able for gene therapy to the ferret exocrine pancreas.

Conclusions and Perspective

The creation of CF pig and ferret models presents a unique
opportunity to evaluate the ability of gene therapies to slow the
progression of disease in multiple target organs. Differences in
the rate of disease progression in certain organs of these CF

models (e.g., pancreatic and gallbladder disease) also provide
opportunities to understand at what stages of disease gene
therapy can be effective. Both models appear to develop dis-
ease at an accelerated rate compared with humans, facilitating a
variety of studies. These models may also be useful in test-
ing stem cell-based gene therapies, either using induced plu-
ripotent stem cells or adult somatic stem cells. Gene-editing
technologies using engineered zinc finger nucleases,144 tran-
scription activator-like effector nucleases,145 and clustered
regularly interspaced short palindromic repeats/Cas9 nucle-
ases146 have begun to demonstrate the potential to correct en-
dogenous mutations at the CFTR locus by homologous
recombination.147,148 Notably, the DF508-CFTR pig model
exists149 and new CFTR mutant ferret models are in the pipe-
line. Such models will further expand the usefulness of CF pigs
and ferrets to test innovative gene and cell therapy strategies.
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