64 research outputs found

    A Novel Scholar Embedding Model for Interdisciplinary Collaboration

    Full text link
    Interdisciplinary collaboration has become a driving force for scientific breakthroughs, and evaluating scholars' performance in interdisciplinary researches is essential for promoting such collaborations.However, traditional scholar evaluation methods based solely on individual achievements do not consider interdisciplinary cooperation, creating a challenge for interdisciplinary scholar evaluation and recommendation. To address this issue, we propose a scholar embedding model that quantifies and represents scholars based on global semantic information and social influence, enabling real-time tracking of scholars' research trends. Our model incorporates semantic information and social influence for interdisciplinary scholar evaluation, laying the foundation for future interdisciplinary collaboration discovery and recommendation projects. We demonstrate the effectiveness of our model on a sample of scholars from the Beijing University of Posts and Telecommunications.Comment: 9 pages, 4 figures, 1 tabl

    PowerFusion: A Tensor Compiler with Explicit Data Movement Description and Instruction-level Graph IR

    Full text link
    Deep neural networks (DNNs) are of critical use in different domains. To accelerate DNN computation, tensor compilers are proposed to generate efficient code on different domain-specific accelerators. Existing tensor compilers mainly focus on optimizing computation efficiency. However, memory access is becoming a key performance bottleneck because the computational performance of accelerators is increasing much faster than memory performance. The lack of direct description of memory access and data dependence in current tensor compilers' intermediate representation (IR) brings significant challenges to generate memory-efficient code. In this paper, we propose IntelliGen, a tensor compiler that can generate high-performance code for memory-intensive operators by considering both computation and data movement optimizations. IntelliGen represent a DNN program using GIR, which includes primitives indicating its computation, data movement, and parallel strategies. This information will be further composed as an instruction-level dataflow graph to perform holistic optimizations by searching different memory access patterns and computation operations, and generating memory-efficient code on different hardware. We evaluate IntelliGen on NVIDIA GPU, AMD GPU, and Cambricon MLU, showing speedup up to 1.97x, 2.93x, and 16.91x(1.28x, 1.23x, and 2.31x on average), respectively, compared to current most performant frameworks.Comment: 12 pages, 14 figure

    Quench of a Single-Layer ReBCO CORC Cable with Non-Uniform Terminal Contact Resistance

    Get PDF
    ReBCO conductor-on-round-core (CORC) cable has become a promising candidate for high temperature superconducting (HTS) power applications, due to its great mechanical strength, high current carrying capacity, high flexibility, and low ac losses. However, ReBCO coated conductors are at risk of quenching, which significantly affects the thermal stability and reliability of the CORC cable. Three-dimensional (3-D) numerical study on the quench behavior of the CORC cable remains a challenge, for its complex geometry is difficult to cope with. In this paper, a 3-D time-dependent multi-physics quench model based on the T-A formulation has been developed. Three modules are coupled in this model; the T-A formulation model, a heat transfer model, and an equivalent circuit model. The quench behavior of a single-layer ReBCO CORC cable with non-uniform terminal contact resistances has been studied, when a hotspot is imposed on one of the tapes to induce a local quench. Results show that, the CORC cable has the highest MQE; in other words, it is the most stable situation, when the hotspot-induced quench occurs on the tape with the middle value of terminal contact resistance

    Quantitative analysis of guided wave in dielectric logging through numerical simulation

    Get PDF
    A good knowledge of the electromagnetic (EM) wave propagation behaviors in dielectric logging (DL) and borehole radar (BHR) surveying is critically important for the optimization of tool design and implementation, and interpretation of the acquired logging data, as well as understanding the influences of the dielectric permittivity and conductivity of the formation on the EM waves. This letter reported a novel method for the numerical simulation and analysis of the guided wave (GW) propagating along a metallic pipe in a typical DL configuration. A numerical simulation with the 3-D finite-difference time-domain (FDTD) method was applied to the broadband DL tool to obtain the wavefield and responses of the receiver. By monitoring the wave attenuation along the metallic drill collar, the intensity of the GW and loss factor can be determined. The coupling efficiency of the GW can be obtained when the total power emitted from the transmitting antenna is known. Simulation results revealed that the coupling efficiency of the GW changes with the water saturation of the formation and frequency. The simulation also suggest, by installing a slope structure adjacent to the transmitting antenna, the energy coupled into the GW could be reduced at different levels. Finally, the relationship between the received signals' amplitude and GW's coupling efficiency showed the quantified contribution of the GW to the received sign

    Milestones in autonomous driving and intelligent vehicles: survey of surveys

    Get PDF
    Interest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks, lack of systematic summary and research directions in the future. Here we propose a Survey of Surveys (SoS) for total technologies of AD and IVs that reviews the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. To our knowledge, this article is the first SoS with milestones in AD and IVs, which constitutes our complete research work together with two other technical surveys. We anticipate that this article will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Quench of a Single-Layer ReBCO CORC Cable with Non-Uniform Terminal Contact Resistance

    Get PDF
    ReBCO conductor-on-round-core (CORC) cable has become a promising candidate for high temperature superconducting (HTS) power applications, due to its great mechanical strength, high current carrying capacity, high flexibility, and low ac losses. However, ReBCO coated conductors are at risk of quenching, which significantly affects the thermal stability and reliability of the CORC cable. Three-dimensional (3-D) numerical study on the quench behavior of the CORC cable remains a challenge, for its complex geometry is difficult to cope with. In this paper, a 3-D time-dependent multi-physics quench model based on the T-A formulation has been developed. Three modules are coupled in this model; the T-A formulation model, a heat transfer model, and an equivalent circuit model. The quench behavior of a single-layer ReBCO CORC cable with non-uniform terminal contact resistances has been studied, when a hotspot is imposed on one of the tapes to induce a local quench. Results show that, the CORC cable has the highest MQE; in other words, it is the most stable situation, when the hotspot-induced quench occurs on the tape with the middle value of terminal contact resistance.</p

    The Impact of Urban Construction Land Expansion on Carbon Emissions from the Perspective of the Yangtze River Delta Integration, China

    No full text
    Regional integration plays a pivotal role in the socio-economic advancement of various global regions and is closely linked with the expansion of construction land. This expansion is a major contributor to urban carbon emissions. Utilizing a geographical regression discontinuity design (GRDD), this paper estimates the impact of urban construction land expansion on carbon emissions and explores the underlying mechanisms within the regional integration process of the Yangtze River Delta (YRD), China. The findings reveal that urban construction land expansion significantly influences carbon emissions, displaying an inverted “U”-shaped pattern. Furthermore, this expansion affects carbon emissions through the transformation of industrial structures, shifts in consumption patterns, and enhancements in scientific and technological investments. Our findings span the performance of the Yangtze River Delta from its early development stages to a relatively mature phase. This paper also partially reveals how the Yangtze River Delta, with both megacities and large- to medium-sized cities, manages urban construction land expansion during the integration process and strives for low-carbon emissions reduction. These results can provide green growth recommendations that balance socio-economic development, low-carbon emissions, and social equity not only for other urban agglomerations in China but also for similar regions in other developing countries by altering construction land utilization patterns
    • …
    corecore