87 research outputs found

    Evolution of magnetic correlation in an inhomogeneous square lattice

    Full text link
    We explore the magnetic properties of a two-dimensional Hubbard model on an inhomogeneous square lattice, which provides a platform for tuning the bandwidth of the flat band. In its limit, this inhomogeneous square lattice turns into a Lieb lattice, and it exhibits abundant properties due to the flat band structure at the Fermi level. By using the determinant quantum Monte Carlo simulation, we calculate the spin susceptibility, double occupancy, magnetization, spin structure factor, and effective pairing interaction of the system. It is found that the antiferromagnetic correlation is suppressed by the inhomogeneous strength and that the ferromagnetic correlation is enhanced. Both the antiferromagnetic correlation and ferromagnetic correlation are enhanced as the interaction increases. It is also found that the effective dd-wave pairing interaction is suppressed by the increasing inhomogeneity. In addition, we also study the thermodynamic properties of the inhomogeneous square lattice, and the calculation of specific heat provide good support for our point. Our intensive numerical results provide a rich magnetic phase diagram over both the inhomogeneity and interaction

    Identify the radiotherapy-induced abnormal changes in the patients with nasopharyngeal carcinoma

    Get PDF
    Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma, which often causes inevitable brain injury in the process of treatment. The majority of patients has no abnormal signal or density change of the conventional magnetic resonance imaging (MRI) and computed tomography (CT) examination in the long-term follow-up after radiation therapy. However, when there is a visible CT and conventional MR imaging changes, the damage often has been severe and lack of effective treatments, seriously influencing the prognosis of patients. Therefore, the present study aimed to investigate the abnormal changes in nasopharyngeal carcinoma (NPC) patients after RT. In the present study, we exploited the machine learning framework which contained two parts: feature extraction and classification to automatically detect the brain injury. Our results showed that the method could effectively identify the abnormal regions reduced by radiotherapy. The highest classification accuracy was 82.5 % in the abnormal brain regions. The parahippocampal gyrus was the highest accuracy region, which suggested that the parahippocampal gyrus could be most sensitive to radiotherapy and involved in the pathogenesis of radiotherapy-induced brain injury in NPC patients

    An overview of biological research on hypoxia-inducible factors (HIFs)

    Get PDF
    Hypoxia-inducible factors (HIFs), as a family of transcription factors involved in the cellular response to hypoxia, are key regulatory factors in the regulation mechanism of an organism’s response to hypoxia. A large number of studies have shown that HIFs are closely related to the angiogenesis, erythropoiesis, cell metabolism, and autophagy of organisms, as well as the occurrence and development of tumours. Therefore, it is of great significance to further study HIFs to understand and treat tumours or other related diseases. This paper summarises the structure, oxygen-dependent degradation mechanism, non-oxygen-dependent degradation mechanism, transcriptional activation mechanism, relevant signalling pathways, and inhibitors of HIFs, in order to provide new clues for the treatment of tumour, vascular, and other related diseases.

    Rethink Baseline of Integrated Gradients from the Perspective of Shapley Value

    Full text link
    Numerous approaches have attempted to interpret deep neural networks (DNNs) by attributing the prediction of DNN to its input features. One of the well-studied attribution methods is Integrated Gradients (IG). Specifically, the choice of baselines for IG is a critical consideration for generating meaningful and unbiased explanations for model predictions in different scenarios. However, current practice of exploiting a single baseline fails to fulfill this ambition, thus demanding multiple baselines. Fortunately, the inherent connection between IG and Aumann-Shapley Value forms a unique perspective to rethink the design of baselines. Under certain hypothesis, we theoretically analyse that a set of baseline aligns with the coalitions in Shapley Value. Thus, we propose a novel baseline construction method called Shapley Integrated Gradients (SIG) that searches for a set of baselines by proportional sampling to partly simulate the computation path of Shapley Value. Simulations on GridWorld show that SIG approximates the proportion of Shapley Values. Furthermore, experiments conducted on various image tasks demonstrate that compared to IG using other baseline methods, SIG exhibits an improved estimation of feature's contribution, offers more consistent explanations across diverse applications, and is generic to distinct data types or instances with insignificant computational overhead.Comment: 12 page

    Effect of Kangfuxin

    Get PDF
    Objective. To evaluate the efficacy and safety of Kangfuxin Solution, a pure Chinese herbal medicine, on mucositis induced by chemoradiotherapy in nasopharyngeal carcinoma patients. Methods. A randomized, parallel-group, multicenter clinical study was performed. A total of 240 patients were randomized to receive either Kangfuxin Solution (test group) or compound borax gargle (control group) during chemoradiotherapy. Oral mucositis, upper gastrointestinal mucositis, and oral pain were evaluated by Common Terminology Criteria for Adverse Events (CTCAE) v3.0 and the Verbal Rating Scale (VRS). Results. Of 240 patients enrolled, 215 were eligible for efficacy analysis. Compared with the control group, the incidence and severity of oral mucositis in the test group were significantly reduced (P=0.01). The time to different grade of oral mucositis occurrence (grade 1, 2, or 3) was longer in test group (P<0.01), and the accumulated radiation dose was also higher in test group comparing to the control group (P<0.05). The test group showed lower incidence of oral pain and gastrointestinal mucositis than the control group (P<0.01). No significant adverse events were observed. Conclusion. Kangfuxin Solution demonstrated its superiority to compound borax gargle on mucositis induced by chemoradiotherapy. Its safety is acceptable for clinical application

    Expression and purification of soluble single-chain Fv against human fibroblast growth factor receptor 3 fused with Sumo tag in Escherichia coli

    Get PDF
    Background: Overexpression or mutated activation of Fibroblast growth factor receptor 3 (FGFR3) is involved in the pathogenesis of many tumors. More and more studies focus on the potential usage of therapeutic antibodies against FGFR3. Results: In this study, a novel single-chain Fv (ScFv) against FGFR3 was prepared and characterized. To achieve the soluble expression, ScFv was fused with Sumo (Small ubiquitin-related modifier) by polymerase chain reaction (PCR), and cloned into pET-20b. The recombinant bacteria were induced by 0.5 mM Isopropyl-\u3b2-D-thiogalactopyranoside (IPTG) for 16 h at 20\ub0C, and the supernatant liquid of Sumo-ScFv was harvested and purified by Ni-NTA chromatography. After being cleaved by the Sumo protease, the recombinant ScFv was released from the fusion protein, and further purified by Ni-NTA chromatography. The purity of ScFv was shown to be higher than 95% and their yield reached 4 mg per liter of bacterial culture. In vitro data showed that ScFv can significantly attenuate FGF9-induced phosphorylation of FGFR3. Conclusion: We provide a novel method to produce soluble expression and bioactive functions of ScFv in Escherichia coli

    ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): ASL pipeline inventory

    Get PDF
    Purpose: To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. Methods: Developers self‐assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. Results: The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo‐continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade‐off between ease of use and flexibility for configuring advanced processing options. Conclusion: Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well‐documented, publicly available, support multiple ASL types, have a user‐friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore