26 research outputs found

    Problems of the consumer rights protection in education : Topical issues

    Get PDF
    Several issues are absorbed in practice and research of law applying, concerning the protection of consumers in “traditional” business and services. But issues concerning customer protection in specific fields of individual and legal persons-education, health, science are not investigated and therefore create difficulties in practice. The aim of the paper is to study theoretical and practical issues concerning customer protection in education in Latvia with an emphasis on gaps of consumer protection regulatory. Overall, it should be noted, protection of consumer rights in education in Latvia is difficult under the present circumstances. This is followed by uncontrollable quality. Leaving aside the guarantees of service also stimulates violence of consumer rights. The partition between administrative regulation and civil regulation, concerning protection of consumer rights in education, is required. It will be the base for partition of both law enforcement and the courts, encouraging the customer, society and its member's confidence in the education system. It also will guarantee the quality of education and justice. It also describes the nature of consumer protection in Republic of Latvia. In addition, modernization of Consumer Rights Protection Law with specific regulations concerning protection of consumer rights in education is needed.publishersversionPeer reviewe

    "Student as a consumer" in Latvian higher education

    Get PDF
    The authors felt it necessary to update the discussion, which is associated with higher education, as one of the forms, which operates under free market conditions, and the relationship that is established between the higher education institutions and the students. Higher Education Institutions is a “service provider”, but the student recipient of the service – “consumer”. Both the Latvian and international higher education area is very different and there are conflicting views on the issue. Consequently, the authors wanted to analyze the current situation in Latvia, look at the legal framework relating to the above problem and to provide their views.publishersversionPeer reviewe

    Engineered allosteric ribozymes that respond to specific divalent metal ions

    Get PDF
    In vitro selection was used to isolate five classes of allosteric hammerhead ribozymes that are triggered by binding to certain divalent metal ion effectors. Each of these ribozyme classes are similarly activated by Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+) and Cd(2+), but their allosteric binding sites reject other divalent metals such as Mg(2+), Ca(2+) and Sr(2+). Through a more comprehensive survey of cations, it was determined that some metal ions (Be(2+), Fe(3+), Al(3+), Ru(2+) and Dy(2+)) are extraordinarily disruptive to the RNA structure and function. Two classes of RNAs examined in greater detail make use of conserved nucleotides within the large internal bulges to form critical structures for allosteric function. One of these classes exhibits a metal-dependent increase in rate constant that indicates a requirement for the binding of two cation effectors. Additional findings suggest that, although complex allosteric functions can be exhibited by small RNAs, larger RNA molecules will probably be required to form binding pockets that are uniquely selective for individual cation effectors

    Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection

    Get PDF
    Self-cleaving ribozymes associated with the glmS genes of many Gram-positive bacteria are activated by binding to glucosamine-6-phosphate (GlcN6P). Representatives of the glmS ribozyme class function as metabolite-sensing riboswitches whose self-cleavage activities down-regulate the expression of GlmS enzymes that synthesizes GlcN6P. As with other riboswitches, natural glmS ribozyme isolates are highly specific for their target metabolite. Other small molecules closely related to GlcN6P, such as glucose-6-phosphate, cannot activate self-cleavage. We applied in vitro selection methods in an attempt to identify variants of a Bacillus cereus glmS ribozyme that expand the range of compounds that induce self-cleavage. In addition, we sought to increase the number of variant ribozymes of this class to further examine the proposed secondary structure model. Although numerous variant ribozymes were obtained that efficiently self-cleave, none exhibited changes in target specificity. These findings are consistent with the hypothesis that GlcN6P is used by the ribozyme as a coenzyme for RNA cleavage, rather than an allosteric effector

    Cation-dependent cleavage of the duplex form of the subtype-B HIV-1 RNA dimerization initiation site

    Get PDF
    The crystal structure of subtype-B HIV-1 genomic RNA Dimerization Initiation Site duplex revealed chain cleavage at a specific position resulting in 3′-phosphate and 5′-hydroxyl termini. A crystallographic analysis showed that Ba2+, Mn2+, Co2+ and Zn2+ bind specifically on a guanine base close to the cleaved position. The crystal structures also point to a necessary conformational change to induce an ‘in-line’ geometry at the cleavage site. In solution, divalent cations increased the rate of cleavage with pH/pKa compensation, indicating that a cation-bound hydroxide anion is responsible for the cleavage. We propose a ‘Trojan horse’ mechanism, possibly of general interest, wherein a doubly charged cation hosted near the cleavage site as a ‘harmless’ species is further transformed in situ into an ‘aggressive’ species carrying a hydroxide anion

    Modulating RNA structure and catalysis: lessons from small cleaving ribozymes

    Get PDF
    RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today’s knowledge in the field

    Selection of allosteric β-lactamase mutants featuring an activity regulation by transition metal ions

    No full text
    Libraries of phage-displayed β-lactamase mutants in which up to three loops have been engineered by genetic introduction of random peptide sequences or by randomization of the wild-type sequence have been submitted to selection protocols designed to find mutants in which binding of transition metal ions to the engineered secondary binding site leads to significant effects on the enzymatic activity. A double-selection protocol was applied: The phage-displayed libraries were first selected for transition metal ions affinity by panning on IMAC support, then a second selection step was applied to isolate mutants that have retained significant catalytic activity. The analysis of the kinetic properties of mutants in the presence of nickel, copper, or zinc ions allowed isolation of a few mutants whose activity was either enhanced or inhibited by factors up to three and >10, respectively, in a metal-specific manner. A remarkable mutant exhibiting differential allosteric regulation depending on the metal was found. Its activity was activated by nickel ion binding, inhibited by cupric ion binding, and nearly unaffected by zinc ions. These observations point to an interesting potential for up- or down-regulation of activity within a monomeric enzyme by binding to an “allosteric site” relatively remote from the active site
    corecore