245 research outputs found

    Quantum Pareto Optimal Control

    Full text link
    We describe algorithms, and experimental strategies, for the Pareto optimal control problem of simultaneously driving an arbitrary number of quantum observable expectation values to their respective extrema. Conventional quantum optimal control strategies are less effective at sampling points on the Pareto frontier of multiobservable control landscapes than they are at locating optimal solutions to single observable control problems. The present algorithms facilitate multiobservable optimization by following direct paths to the Pareto front, and are capable of continuously tracing the front once it is found to explore families of viable solutions. The numerical and experimental methodologies introduced are also applicable to other problems that require the simultaneous control of large numbers of observables, such as quantum optimal mixed state preparation.Comment: Submitted to Physical Review

    Long-term gamma-ray observations of the binary HESS J0632+057 with H.E.S.S., MAGIC and VERITAS

    Full text link
    The gamma-ray binary HESS J0632+057 has been observed at very-high energies (E >> 100 GeV) for more than ten years by the major systems of imaging atmospheric Cherenkov telescopes. We present a summary of results obtained with the H.E.S.S., MAGIC, and VERITAS experiments based on roughly 440 h of observations in total. This includes a discussion of an unusually bright TeV outburst of HESS J0632+057 in January 2018. The updated gamma-ray light curve now covers all phases of the orbital period with significant detections in almost all orbital phases. Results are discussed in context with simultaneous observations with the X-ray Telescope onboard the Neil Gehrels Swift Observatory.Comment: Proceedings of the 36th International Cosmic Ray Conference (ICRC2019) Madison, WI July 24-Aug 1, 201

    Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR

    Full text link
    We present a study of γ\gamma-ray emission from the core-collapse supernova remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data shows a significant spectral curvature around 1.3±0.4stat1.3 \pm 0.4_{stat} GeV that is consistent with the expected spectrum from pion decay. Above this energy, the joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from a simple power-law, and is best described by a power-law with spectral index of 2.17±0.02stat2.17\pm 0.02_{stat} with a cut-off energy of 2.3±0.5stat2.3 \pm 0.5_{stat} TeV. These results, along with radio, X-ray and γ\gamma-ray data, are interpreted in the context of leptonic and hadronic models. Assuming a one-zone model, we exclude a purely leptonic scenario and conclude that proton acceleration up to at least 6 TeV is required to explain the observed γ\gamma-ray spectrum. From modeling of the entire multi-wavelength spectrum, a minimum magnetic field inside the remnant of Bmin150μGB_{\mathrm{min}}\approx150\,\mathrm{\mu G} is deduced.Comment: 33 pages, 9 Figures, 6 Table

    Discovery of very-high-energy emission from RGB J2243+203 and derivation of its redshift upper limit

    Full text link
    Very-high-energy (VHE; >> 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 21 and 24 December 2014. The VERITAS energy spectrum from this source can be fit by a power law with a photon index of 4.6±0.54.6 \pm 0.5, and a flux normalization at 0.15 TeV of (6.3±1.1)×1010 cm2s1TeV1(6.3 \pm 1.1) \times 10^{-10} ~ \textrm{cm}^{-2} \textrm{s}^{-1} \textrm{TeV}^{-1}. The integrated \textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is (4.1±0.8)×10-8 cm-2s-1(4.1 \pm 0.8) \times 10^{\textrm{-8}} ~\textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}, which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0±0.1×10-9 cm-2s-14.0 \pm 0.1 \times 10^{\textrm{-9}} ~ \textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}). The detection with VERITAS triggered observations in the X-ray band with the \textit{Swift}-XRT. However, due to scheduling constraints \textit{Swift}-XRT observations were performed 67 hours after the VERITAS detection, not simultaneous with the VERITAS observations. The observed X-ray energy spectrum between 2 keV and 10 keV can be fitted with a power-law with a spectral index of 2.7±0.22.7 \pm 0.2, and the integrated photon flux in the same energy band is (3.6±0.6)×1013 cm2s1(3.6 \pm 0.6) \times 10^{-13} ~\textrm{cm}^{-2} \textrm{s}^{-1}. EBL model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9<~0.9 to z < 1.1<~1.1

    VERITAS Observations of the gamma-Ray Binary LS I +61 303

    Get PDF
    LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.Comment: accepted for publication in The Astrophysical Journa

    Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS

    Full text link
    Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, USA, is primarily utilized for gamma-ray astronomy, but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 ±\pm 40stat_{stat} ±\pm 140syst_{syst} GeV.Comment: 17 pages, 2 figures, accepted for publication in PR

    Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS

    Full text link
    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E >> 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations (σ\sigma) and is found to be extended and asymmetric with a width of 9.5^{\prime}±\pm1.2^{\prime} along the major axis and 4.0^{\prime}±\pm0.5^{\prime} along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ±\pm 0.14stat_{stat} ±\pm 0.21sys_{sys} and a normalization of (9.5 ±\pm 1.6stat_{stat} ±\pm 2.2sys_{sys}) ×\times 1013^{-13}TeV1^{-1} cm2^{-2} s1^{-1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation

    Gamma-ray Observations Under Bright Moonlight with VERITAS

    Full text link
    Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727+502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations
    corecore