4 research outputs found

    Pond Snail Reproduction as Model in the Environmental Risk Assessment: Reality and Doubts

    Get PDF
    In European limnetic systems, the most relevant endocrine-disrupting chemicals (EDCs) of steroid type are the natural and synthetic hormones, phytosterols, pesticides, biocides and other chemicals produced by the plastic industry. Their presence in aquatic ecosystems represents a potentially adverse environmental and public health impact. Furthermore, this is a warning signal that the current handling of pharmaceuticals needs to be further improved. Nowadays, it has become clear that EDCs have specific disturbing effects on the neuroendocrine system of invertebrate and vertebrate aquatic animals, particularly gastropods. Among a latter, pond snail (Lymnaea stagnalis) has been used as the first aquatic non-arthropod test organism in studying the effect of EDCs because they are sensitive to various anthropogenic steroids, like progestogens. Investigating a variety of reproductive endpoints of Lymnaea, such as fecundity, oocyte production, egg mass production, the quality of egg masses, the shell size in development and after egg-laying, the time window of cell division in the offspring, the metabolite content of single-cell zygotes and egg albumen has concluded that progestogen contaminations in water are detrimental for reproduction and early stage development of Lymnaea. This chapter is an attempt to show whether Lymnaea reproduction, despite many altering reproductive endpoints, is a suitable model for environmental risk assessment or not

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP

    Identification, presence, and possible multifunctional regulatory role of invertebrate gonadotropin-releasing hormone/corazonin molecule in the great pond snail (Lymnaea stagnalis)

    No full text
    In the last years, our interpretation of the origin and function of the gonadotropin-releasing hormone (GnRH) neuropeptide superfamily has changed substantially. A main driver for these conceptual changes came from increased investigations into functions and evolutionary lineage of previously identified molluscan GnRH molecules. Emerging evidence suggests not only reproductive, but also diverse biological effects of these molecules and proposes they should most likely be called corazonin (CRZ). Clearly, a more global understanding requires further exploration of species-specific functions and structure of invGnRH/CRZ peptides. Towards this goal, we have identified the full-length cDNA of invGnRH/CRZ peptide in an invertebrate model species, the great pond snail Lymnaea stagnalis, termed ly-GnRH/CRZ, and characterized the transcript and peptide distribution in the central nervous system (CNS) and peripheral organs. Our results are consistent with previous data that molluscan GnRHs are more related to CRZs and serve diverse functions. Hence, our findings support the notion that peptides originally termed molluscan GnRH are multifunctional modulators and that nomenclature change should be taken into consideration
    corecore