121 research outputs found

    Future climate change in the Mediterranean area: implications for water use and weed management

    Get PDF
    Results obtained within research activity from the Climesco Italian Project are summarized. These results suggest that in regards to the impact of climate change in the Mediterranean area, a decrease of water availability and a more frequent occurrence of drought periods are expected. In order to describe the main effects of climate change on water use in some agro-ecosystems in the Mediterranean area we showed that the Penman-Monteith equation can be modified to simulate future changes in reference evapotranspiration by recalibration of the crop resistive parameter. Moreover, the use of adjusted crop coefficients (Kc) can help quantify the climate change impact on water use for irrigated crops grown in Southern Italy and elsewhere in the Mediterannean. For this region temperature rise and the concomitant expected rainfall reduction may lead to an increase yearly potential water deficits. For autumn-spring crops a further increase of water deficit is not expected. In contrast for a significant increase of water deficit, and thus of irrigation needs, is expected for spring-summer crops. Another aspect considered in this review is how in the Mediterranean area, drought conditions and warmer temperatures will alter the competitive balance between crops and some weed species. We report experimental data showing how weed aggressiveness and competition is already increasing due to warmer temperatures in the Mediterranean region

    Effect of Atmospheric CO2 Levels on Nutrients in Cheatgrass Tissue

    Get PDF
    Rising atmospheric CO2 has resulted in declining tissue nutrient concentrations and leaf biochemicals, which has potential ramifications for animal nutrition, herbivory and litter decomposition rates. We investigated the interacting effects of atmospheric CO2 concentrations (270, 320, 370, and 420 ppmv), plant age (42, 57, 75, and 87 days), and elevation ecotype (salt desert, sagebrush steppe, and mountain brush) on aboveground tissue nutrient levels and biochemistry of cheatgrass (Bromus tectorum), an important range grass in the Great Basin. Most nutrients were affected by significant (P \u3c 0.05) interactions between CO2 level and plant age, and plant ecotype and plant age. At 87 days growth, tissue C:N ratios increased significantly and concentrations of P, K, and Mg declined, with rising CO2 levels suggesting declining forage nutrition. Tissue concentrations of Mn, K, Mg, and Ca increased with plant age and, in general, the low elevation ecotype had greater tissue nutrient concentrations than the high elevation ecotype. Hemicellulose concentration was influenced by a significant CO2 level by ecotype interaction; overall, the high elevation ecotype had greater concentrations of hemicellulose, which increased with increasing CO2 levels. The high elevation ecotype had significantly less acid detergent fiber than the low or mid elevation ecotypes. These data suggest that increasing atmospheric CO2 levels may have a profound effect on the nutritional value of cheatgrass forage, and this effect may differ among elevational ecotypes

    Interaction of the Onset of Spring and Elevated Atmospheric CO(2) on Ragweed (Ambrosia artemisiifolia L.) Pollen Production

    Get PDF
    Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of the growing season. We designed the present study to examine the interactive effects of timing of dormancy release of seeds with low and high atmospheric CO(2) on biomass, reproduction, and phenology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-controlled glasshouses at either ambient or 700-ppm CO(2) concentrations, placing open-top bags over inflorescences to capture pollen. Measurements of plant height and weight; inflorescence number, weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant pollen productivity was estimated from an allometric-based model. Timing and CO(2) interacted to influence pollen production. At ambient CO(2) levels, the earlier cohort acquired a greater biomass, a higher average weight per inflorescence, and a larger number of inflorescences; flowered earlier; and had 54.8% greater pollen production than did the latest cohort. At high CO(2) levels, plants showed greater biomass and reproductive effort compared with those in ambient CO(2) but only for later cohorts. In the early cohort, pollen production was similar under ambient and high CO(2), but in the middle and late cohorts, high CO(2) increased pollen production by 32% and 55%, respectively, compared with ambient CO(2) levels. Overall, ragweed pollen production can be expected to increase significantly under predicted future climate conditions

    The Revised Edition of Korean Calendar for Allergenic Pollens

    Get PDF
    The old calendar of pollens did not reflect current pollen distribution and concentrations that can be influenced by changes of weather and environment of each region in South Korea. A new pollen calendar of allergenic pollens was made based on the data on pollen concentrations obtained in eight regions nationwide between 1997 and 2009. The distribution of pollen was assessed every day at 8 areas (Seoul, Guri, Busan, Daegu, Jeonju, Kwangju, Kangneung, and Jeju) for 12 years between July 1, 1997 and June 30, 2009. Pollens were collected by using Burkard 7-day sampler (Burkard Manufacturing Co Ltd, UK). Pollens which were stained with Calberla's fuchsin staining solution were identified and counted. Pine became the highest pollen in May, and the pollen concentrations of oak and birch also became high. Ragweed appeared in the middle of August and showed the highest pollen concentration in the middles of September. Japanese hop showed a high concentration between the middle of August and the end of September, and mugwort appeared in the middles of August and its concentration increased up until early September. In Kangneung, birch appeared earlier, pine showed a higher pollen concentration than in the other areas. In Daegu, Oriental thuja and alder produced a large concentration of pollens. Pine produced a large concentration of pollens between the middle of April and the end of May. Weeds showed higher concentrations in September and mugwort appeared earlier than ragweed. In Busan the time of flowering is relatively early, and alder and Oriental thuja appeared earliest among all areas. In Kwangju, Oriental thuja and hazelnut appeared in early February. Japanese cedar showed the highest pollen concentration in March in Jeju. In conclusion, update information on pollen calendar in South Korea should be provided for allergic patients through the website to manage and prevent the pollinosis

    Climate Indicators for Agriculture

    Get PDF
    The Climate Indicators for Agriculture report presents 20 indicators of climate change, carefully selected across multiple agricultural production types and food system elements in the United States. Together, they represent an overall view of how climate change is influencing U.S. agriculture and food systems. Individually, they provide useful information to support management decisions for a variety of crop and livestock production systems. The report includes multiple categories of indicators, including physical indicators (e.g., temperature, precipitation), crop and livestock (e.g., animal heat stress), biological indicators (e.g., pests), phenological indicators (e.g. seasonality), and socioeconomic indicators (e.g., total factor productivity)

    Elevated Atmospheric Carbon Dioxide Concentrations Amplify Alternaria alternata Sporulation and Total Antigen Production

    Get PDF
    Background Although the effect of elevated carbon dioxide (CO2) concentration on pollen production has been established in some plant species, impacts on fungal sporulation and antigen production have not been elucidated. Objective Our purpose was to examine the effects of rising atmospheric CO2 concentrations on the quantity and quality of fungal spores produced on timothy (Phleum pratense) leaves. Methods Timothy plants were grown at four CO2 concentrations (300, 400, 500, and 600 Îźmol/mol). Leaves were used as growth substrate for Alternaria alternata and Cladosporium phlei. The spore abundance produced by both fungi, as well as the size (microscopy) and antigenic protein content (ELISA) of A. alternata, were quantified. Results Leaf carbon-to-nitrogen ratio was greater at 500 and 600 Îźmol/mol, and leaf biomass was greater at 600 Îźmol/mol than at the lower CO2 concentrations. Leaf carbon-to-nitrogen ratio was positively correlated with A. alternata spore production per gram of leaf but negatively correlated with antigenic protein content per spore. At 500 and 600 Îźmol/mol CO2 concentrations, A. alternata produced nearly three times the number of spores and more than twice the total antigenic protein per plant than at lower concentrations. C. phlei spore production was positively correlated with leaf carbon-to-nitrogen ratio, but overall spore production was much lower than in A. alternata, and total per-plant production did not vary among CO2 concentrations. Conclusions Elevated CO2 concentrations often increase plant leaf biomass and carbon-to-nitrogen ratio. Here we demonstrate for the first time that these leaf changes are associated with increased spore production by A. alternata, a ubiquitous allergenic fungus. This response may contribute to the increasing prevalence of allergies and asthma

    High [CO2] and Temperature Increase Resistance to Cyhalofop-Butyl in Multiple-Resistant Echinochloa colona

    Get PDF
    Changes in the environment, specifically rising temperature and increasing atmospheric carbon dioxide concentration [CO2], can alter the growth and physiology of weedy plants. These changes could alter herbicide efficacy, crop-weed interaction, and weed management. The objectives of this research were to quantify the effects of increased atmospheric [CO2] and temperature on absorption, translocation and efficacy of cyhalofop-butyl on multiple-resistant (MR) and susceptible (S) Echinochloa colona genotypes. E. colona, or junglerice, is a troublesome weed in rice and in agronomic and horticultural crops worldwide. Cyhalofop-butyl is a grass herbicide that selectively controls Echinochloa spp. in rice. Maximum 14C-cyhalofop-butyl absorption occurred at 120 h after herbicide treatment (HAT) with >97% of cyhalofop-butyl retained in the treated leaf regardless of [CO2], temperature, or genotype. Neither temperature nor [CO2] affected herbicide absorption into the leaf. The translocation of herbicide was slightly reduced in the MR plants vs. S plants either under elevated [CO2] or high temperature. Although plants grown under high [CO2] or high temperature were taller than those in ambient conditions, neither high [CO2] nor high temperature reduced the herbicide efficacy on susceptible plants. However, herbicide efficacy was reduced on MR plants grown under high [CO2] or high temperature about 50% compared to MR plants at ambient conditions. High [CO2] and high temperature increased the resistance level of MR E. colona to cyhalofop-butyl. To mitigate rapid resistance evolution under a changing climate, weed management practitioners must implement measures to reduce the herbicide selection pressure. These measures include reduction of weed population size through reduction of the soil seedbank, ensuring complete control of current infestations with multiple herbicide modes of action in mixture and in sequence, augmenting herbicides with mechanical control where possible, rotation with weed-competitive crops, use of weed-competitive cultivars, use of weed-suppressive cover crops, and other practices recommended for integrated weed management
    • …
    corecore