16 research outputs found

    Conditional human VEGF‐mediated vascularization in chicken embryos using a novel temperature‐inducible gene regulation (TIGR) system

    Get PDF
    Advanced heterologous transcription control systems for adjusting desired transgene expression are essential for gene function assignments, drug discovery, manufacturing of difficult to produce protein pharmaceuticals and precise dosing of gene‐based therapeutic interventions. Conversion of the Streptomyces albus heat shock response regulator (RheA) into an artificial eukaryotic transcription factor resulted in a vertebrate thermosensor (CTA; cold‐inducible transactivator), which is able to adjust transcription initiation from chimeric target promoters (PCTA) in a low‐temperature‐ inducible manner. Evaluation of the temperature‐dependent CTA-PCTA interaction using a tailored ELISA‐like cell‐free assay correlated increased affinity of CTA for PCTA with temperature downshift. The temperature‐inducible gene regulation (TIGR) system enabled tight repression in the chicken bursal B‐cell line DT40 at 41°C as well as precise titration of model product proteins up to maximum expression at or below 37°C. Implantation of microencapsulated DT40 cells engineered for TIGR‐controlled expression of the human vascular endothelial growth factor A (hVEGF121) provided low‐temperature‐induced VEGF‐mediated vascularization in chicken embryo

    Bioengineering of foetal membrane repair

    No full text
    ISSN:1424-7860ISSN:1424-399

    Bioengineering of foetal membrane repair

    No full text
    Preterm premature rupture of the foetal membranes (fruber vorzeitiger Blasensprung) has remained a devastating complication of pregnancy with very high risk of pregnancy loss. Several methods of sealing spontaneously ruptured membranes to stop amniotic fluid leakage and prolong pregnancy have been tested, but no one of them has achieved a clinical breakthrough. Also, needle and foetoscopic puncture of membranes for diagnostic or surgical interventions in the amniotic cavity carry a significant risk of persistent membrane leakage and subsequent rupture - thus limiting the developing field of intrauterine foetal surgery. Efforts are concentrated on taking action before rupture rather than reacting after rupture: one avenue of research concerns prophylactic plugging of foetoscopic access sites in foetal membranes at the time of intervention, thus inhibiting leakage and rupture. Foetal membrane injuries, spontaneous or iatrogenic, constitute extreme challenges to repair: thinness of foetal membrane tissue, difficult localisation and accessibility of the rupture site, the need for injectable sealants, vet gluing conditions and poor wound healing in this tissue all complicate repair. The goal is to achieve immediate and at the same time long-lasting closure of the membrane leak. Here we review approaches to closure of foetal membrane defects with liquid sealants or solid biomaterial scaffolds, with the focus on prophylactic plugging of foetoscopic access sites

    The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis

    Full text link
    A major challenge for therapeutic delivery of angiogenic agents such as vascular endothelial growth factor (VEGF) is to achieve sustained, low dose signaling leading to durable neovessel formation. To this end, we recently created a variant of VEGF(121), TG-VEGF(121) that directly binds to fibrin and gets released locally in proteolysis-triggered manner. Here we combined noninvasive biophotonic monitoring of VEGF receptor 2 gene activation in transgenic VEGFR2-luc mice and histomorphometry to compare endothelial activation and long-term neovascularization by actively released TG-VEGF(121)versus passively released, diffusible wild-type VEGF(121) in subcutaneous fibrin implants. Monitoring in real-time over 3 weeks of luciferase signal driven by the VEGFR2 promoter revealed endothelial activation in skin exposed to wild-type VEGF(121), but no detectable elevation over fibrin alone by TG-VEGF(121). Histology at 3 weeks, however, demonstrated that TG-VEGF(121) promoted vessel growth significantly more effectively and reliably than wild-type VEGF(121). The majority of vessels surviving to 3 weeks contained stabilizing smooth muscle cells. Yet, by 6 weeks, no extra vessels induced by exogenous VEGF were left. In conclusion, release of fibrin-conjugated variant TG-VEGF(121) elicited lower VEGFR2-luc activation than wild-type VEGF(121) yet significantly more vascularization. In the absence of true physiological demand, even stabilized vessels are ultimately regressed

    Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth

    No full text
    Although vascular endothelial growth factor (VEGF) has been described as a potent angiogenic stimulus, its application in therapy remains difficult: blood vessels formed by exposure to VEGF tend to be malformed and leaky. In nature, the principal form of VEGF possesses a binding site for ECM components that maintain it in the immobilized state until released by local cellular enzymatic activity. In this study, we present an engineered variant form of VEGF, alpha2PI1-8-VEGF121, that mimics this concept of matrix-binding and cell-mediated release by local cell-associated enzymatic activity, working in the surgically-relevant biological matrix fibrin. We show that matrix-conjugated alpha2PI1-8-VEGF121 is protected from clearance, contrary to native VEGF121 mixed into fibrin, which was completely released as a passive diffusive burst. Grafting studies on the embryonic chicken chorioallantoic membrane (CAM) and in adult mice were performed to assess and compare the quantity and quality of neovasculature induced in response to fibrin implants formulated with matrix-bound alpha2PI1-8-VEGF121 or native diffusible VEGF121. Our CAM measurements demonstrated that cell-demanded release of alpha2PI1-8-VEGF121 increases the formation of new arterial and venous branches, whereas exposure to passively released wild-type VEGF121 primarily induced chaotic changes within the capillary plexus. Specifically, our analyses at several levels, from endothelial cell morphology and endothelial interactions with periendothelial cells, to vessel branching and network organization, revealed that alpha2PI1-8-VEGF121 induces vessel formation more potently than native VEGF121 and that those vessels possess more normal morphologies at the light microscopic and ultrastructural level. Permeability studies in mice validated that vessels induced by alpha2PI1-8-VEGF121 do not leak. In conclusion, cell-demanded release of engineered VEGF121 from fibrin implants may present a therapeutically safe and practical modality to induce local angiogenesis

    Conditional human VEGF-mediated vascularization in chicken embryos using a novel temperature-inducible gene regulation (TIGR) system

    Get PDF
    Advanced heterologous transcription control systems for adjusting desired transgene expression are essential for gene function assignments, drug discovery, manufacturing of difficult to produce protein pharmaceuticals and precise dosing of gene-based therapeutic interventions. Conversion of the Streptomyces albus heat shock response regulator (RheA) into an artificial eukaryotic transcription factor resulted in a vertebrate thermosensor (CTA; cold-inducible transactivator), which is able to adjust transcription initiation from chimeric target promoters (P(CTA)) in a low-temperature- inducible manner. Evaluation of the temperature-dependent CTA–P(CTA) interaction using a tailored ELISA-like cell-free assay correlated increased affinity of CTA for P(CTA) with temperature downshift. The temperature-inducible gene regulation (TIGR) system enabled tight repression in the chicken bursal B-cell line DT40 at 41°C as well as precise titration of model product proteins up to maximum expression at or below 37°C. Implantation of microencapsulated DT40 cells engineered for TIGR-controlled expression of the human vascular endothelial growth factor A (hVEGF(121)) provided low-temperature-induced VEGF-mediated vascularization in chicken embryos

    Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro

    Full text link
    OBJECTIVE: This study was undertaken to test injectable surgical sealants that are biocompatible with fetal membranes and that are to be used eventually for the closure of iatrogenic membrane defects. STUDY DESIGN: Dermabond (Ethicon Inc, Norderstedt, Germany), Histoacryl (B. Braun GmbH, Tuttlingen, Germany), and Tissucol (Baxter AG, Volketwil, Switzerland) fibrin glue, and 3 types of in situ forming poly(ethylene glycol)-based polymer hydrogels were tested for acute toxicity on direct contact with fetal membranes for 24 hours. For the determination of elution toxicity, extracts of sealants were incubated on amnion cell cultures for 72 hours. Bonding and toxicity was assessed through morphologic and/or biochemical analysis. RESULTS: Extracts of all adhesives were nontoxic for cultured cells. However, only Tissucol and 1 type of poly(ethylene glycol)-based hydrogel, which is a mussel-mimetic tissue adhesive, showed efficient, nondisruptive, nontoxic bonding to fetal membranes. Mussel-mimetic tissue adhesive that was applied over membrane defects that were created with a 3.5-mm trocar accomplished leak-proof closure that withstood membrane stretch in an in vitro model. CONCLUSION: A synthetic hydrogel-type tissue adhesive that merits further evaluation in vivo emerged as a potential sealing modality for iatrogenic membrane defects
    corecore