15 research outputs found

    Study on Dynamic Characteristics of the Disc Spring System in Vibration Screen

    No full text
    To avoid too large exciting force in traditional linear vibrating screen and unstable working state in resonance screen, the disc spring system is applied in the linear vibration screen. The model of the disc spring system in vibration screen is established by simulation and experiment. The characteristics of modal and amplitude of the disc spring system in vibration screen are studied. We found that the disc spring system vibrates in vertical direction at the third-order natural frequency, which is consistent with the direction of the vibration screen when screening particles. Moreover, the third-order natural frequencies in simulation and experiment are basically consistent. Furthermore, the maximum amplitude of the disc spring system appears at 960 r/min (16 Hz), which is in accord with the third-order natural frequency. Meanwhile, the amplitude increases proportionally with the increase of exciting force, while the amplification factors are the same under three different exciting forces. This indicates that the disc spring system has excellent linearity. The results of research provide guidance for design and application of elastic components on the vibration screen

    Experimental and Numerical Studies on the Ultimate Bending Strength of Welded Plated Grillage with Combined Openings

    No full text
    Plated grillage with combined openings was susceptible to complex failure behaviors as the main load-bearing structure of the superstructure on passenger ships subjected to deck loads. Additionally, the deformation and stresses generated during the welding of the plated grillage complicated the prediction of its failure behavior. In this case, a new partitioned inherent strain method and nonlinear finite element method were used to simulate the welding and loading process, and experiments were designed and carried out to make comparisons, unveiling the influence regulations between the failure behavior of the structure and the loading condition, the initial welding state. This research on the failure mode analysis of plated grillages could provide references for the optimization of the structural form of plated grillages and the cargo loading scheme on the deck of a real ship

    A Study on the Influence of Different Constraint Modes and Number of Disc Springs on the Dynamics of Disc Spring System

    No full text
    In this work, the influences of constraint modes and the number of disc springs on the dynamic characteristics of the disc spring system are studied by simulation and experiment. The amplitudes and amplification factors of the disc spring system under different constraint modes and different numbers of disc springs are obtained. The results show that the maximum amplitude and amplification factor both appear at the constraint modes of locking and no preloading, which indicates that the locking and no preloading is the best constraint mode among the four different constraint modes. Moreover, the amplitude of the disc spring system first increases and then decreases with the number of disc springs increasing, while the amplification factor increases with the number of disc springs increasing. The maximum amplification factor (10.21 in experiment) of the disc spring system appears at 10 disc springs. By studying the relationship between the number of disc springs and amplification factor and damping, we find that the damping of the disc spring system can be reduced by increasing the disc spring numbers, and thus, the corresponding amplification factor can be improved. Furthermore, as the number of disc spring increases, the height differences of disc springs before and after locking are all close to 3 mm, which indicates that the amount of locking compression in the assembly process has a good consistency when the number of disc springs changes. The aforementioned works can provide guidance for the industrial production in screen vibration

    Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions

    No full text
    Tool wear prediction is essential to ensure part quality and machining efficiency. Tool wear is affected by factors such as the material, structure, process, and processing time of the parts. Tool wear under the variable working conditions and the above factors show a complex coupling and timing correlation, which makes it challenging to predict tool wear under variable working conditions. This article aims to resolve this issue. First, we establish a unified representation of working condition factors. The stacked autoencoder (SAE) model adaptively extracts tool wear features from the machining signal. The extracted wear features and respective working conditions then combine into a working condition feature sequence for predicting tool wear. Finally, the advantages of the long short-term memory (LSTM) model to solve memory accumulation effects learn the regular wear pattern of the working condition feature sequence to realize the prediction of the tool wear. An experiment illustrates the effectiveness of the proposed method

    Colonial Microcystis’ biomass affects its shift to diatom aggregates under aeration mixing

    No full text
    Abstract The effect of hydrodynamic mixing on controlling Microcystis blooms or changing the algal community to diatom dominance has been widely studied; however, the effects of colonial Microcystis biomass on the development of the algal community are poorly known. Here, in order to study the changes in Microcystis blooms under continuous aeration mixing, an experiment was carried out in a greenhouse with factors of varying biomass of Microcystis and inorganic nitrogen and phosphorus enrichment in summer. There were three chlorophyll a (Chl-a) levels in six treatments: low Chl-a level of 68.4 μg L-1 (treatments L, L-E), medium Chl-a level of 468.7 μg L-1 (treatments M, M-E), and high Chl-a level of 924.1 μg L-1 (treatments H, H-E). Treatments L-E, M-E and H-E were enriched with the same inorganic nitrogen and phosphorus nutrients. During the experiment of 30 days, the concentration of Microcystis and Chl-a decreased, and diatom Nitzschia palea cells appeared in all the treatments, which became dominant in treatments M, M-E, H and H-E, with the highest biomass of 9.41 ± 1.96 mg L-1 Nitzschia in treatment H-E on day 30. The rank order of the biomass of Nitzschia from low to high was (L = L-E) < (M = M-E) < H < H-E (P < 0.05). In addition, Nitzschia cells were aggregates attached to Microcystis colonies in all the treatments. The results showed that the initial biomass of colonial Microcystis affected the algal shift from Microcystis dominance to Nitzschia dominance. However, the enriched inorganic nitrogen and phosphorus was beneficial for the Nitzschia increase in the high biomass treatment alone. The shift from Microcystis dominance to diatom dominance under continuous aeration mixing may be caused by low light conditions as well as the nutrients released from Microcystis decay. Moreover, the aerobic condition caused by aeration mixing maintained the colonial mucilaginous sheath to support the growth of Nitzschia cells in aggregation. This study found for the first time that Microcystis blooms could shift to diatom Nitzschia dominance in aggregates. It provided a method to control and manipulate Microcystis blooms to diatom dominance through continuous aeration mixing to proper biomass of Microcystis colonies. The shift to diatoms dominance would provide more high quality food organisms for aquaculture and be beneficial to the material cycling and energy flowing in food web dynamics

    Grain-sized moxibustion at Zusanli (ST36) promotes hepatic autophagy in rats with hyperlipidemia by regulating the ULK1 and TFEB expression through the AMPK/mTOR signaling pathway

    No full text
    Objective: Grain-sized moxibustion is an effective treatment for hyperlipidemia, but how it regulates dyslipidemia and liver lipid deposits still needs to be fully understood. This study explored the molecular biological mechanism of grain-sized moxibustion to regulate hepatic autophagy in hyperlipidemic rats by affecting ULK1 and TFEB through the AMPK/mTOR signaling pathway. Methods: Thirty male Sprague-Dawley (SD) rats were fed a high-fat diet for eight weeks to induce hyperlipidemia. Hyperlipidemic rats were divided into the HFD group, HFD + Statin group, HFD + CC + Moxi group, and grain-sized moxibustion intervention group (HFD + Moxi group). The control (Blank) group consisted of normal rats without any intervention. Grain-sized moxibustion and drug interventions were initiated eight weeks after high-fat diet induction and continued for ten weeks. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), as well as hepatic triglyceride (TG), were measured after treatment. Hepatic steatosis and the expression of LC3I, LC3II, p62, p-AMPK, AMPK, p-mTOR, mTOR, ULK1, p-ULK1, and TFEB in the liver were analyzed. Results: Compared with the HFD group, grain-sized moxibustion improved hyperlipidemia and hepatocyte steatosis, increased the LC3, p-AMPK, p-ULK1, and nuclear TFEB expression in the liver, but decreased the p62 and p-mTOR expression. Conclusion: Grain-sized moxibustion at ST36 acupoints could regulate the blood lipid level of SD rats with hyperlipidemia, increase the expression level of ULK1 and TFEB by activating the AMPK/mTOR signaling pathway in liver tissues, and initiate the transcription of autophagy genes such as LC3

    3D Melamine Sponge-Derived Cobalt Nanoparticle-Embedded N-Doped Carbon Nanocages as Efficient Electrocatalysts for the Oxygen Reduction Reaction

    No full text
    The large-scale and controllable synthesis of novel N-doped three-dimensional (3D) carbon nanocage-decorated carbon skeleton sponges (Co-NCMS) is introduced. These Co-NCMS were highly active and durable non-noble metal catalysts for the oxygen reduction reaction (ORR). This hybrid electrocatalyst showed high ORR activity with a diffusion-limiting current of 5.237 mA·cm-2 in 0.1 M KOH solution through the highly efficient 4e- pathway, which was superior to that of the Pt/C catalyst (4.99 mA·cm-2), and the ORR Tafel slope is ca. 67.7 mV·dec-1 at a high potential region, close to that of Pt/C. Furthermore, Co-NCMS exhibited good ORR activity in acidic media with an onset potential comparable to that of the Pt/C catalyst. Most importantly, the prepared catalyst showed much higher stability and better methanol tolerance in both alkaline and acidic solutions. The power density obtained in a proton exchange membrane fuel cell was as high as 0.37 W·cm-2 at 0.19 V compared with 0.45 W·cm-2 at 0.56 V for the Pt/C catalyst. In Co-NCMS, the N-doped carbon nanocages facilitated the diffusion of the reactant, maximizing the exposure of active sites on the surface and protecting the active metallic core from oxidation. This made Co-NCMS one of the best non-noble metal catalysts and potentially offers an alternative approach for the efficient utilization of active transition metals in electrocatalyst applications
    corecore