83 research outputs found

    Itinerant and localized magnetism on the triangular lattice: sodium rich phases of Nax_xCoO2_2

    Full text link
    We study the interplay between correlation, itinerant ferromagnetism and local moment formation on the electron doped triangular lattice of sodium cobaltates Nax_xCoO2_2. We find that strong correlation renormalizes the Stoner criterion and stabilizes the paramagnetic state for x<xc0.67x<x_c\simeq0.67. For x>xcx>x_c, ferromagnetic (FM) order emerges. The enhanced Na dopant potential fluctuations play a crucial role in the sodium rich phases and lead to an inhomogeneous FM state, exhibiting nonmagnetic Co3+^{3+} patches, antiferromagnetic (AF) correlated regions, and FM clusters with AF domains. Hole doping the band insulator at x=1 leads to the formation of local moments near the Na vacancies and AF correlated magnetic clusters. We explain recent observations by neutron, μ\muSR, and NMR experiments on the evolution of the magnetic properties in the sodium rich phases.Comment: revtex4 file, 5 pages, 3 figures, published versio

    Electron correlation and Fermi surface topology of Nax_xCoO2_2

    Full text link
    The electronic structure of Nax_xCoO2_2 revealed by recent photoemission experiments shows important deviations from band theory predictions. The six small Fermi surface pockets predicted by LDA calculations have not been observed as the associated ege_g^\prime band fails to cross the Fermi level for a wide range of sodium doping concentration xx. In addition, significant bandwidth renormalizations of the t2gt_{2g} complex have been observed. We show that these discrepancies are due to strong electronic correlations by studying the multi-orbital Hubbard model in the Hartree-Fock and strong-coupling Gutzwiller approximation. The quasiparticle dispersion and the Fermi surface topology obtained in the presence of strong local Coulomb repulsion are in good agreement with experiments.Comment: 5 pages, 4 figures, revtex4; minor changes, to be published in Phys. Rev. Let

    MIMO-Based Forward-Looking SAR Imaging Algorithm and Simulation

    Get PDF
    Multiple-input multiple-output (MIMO) radar imaging can provide higher resolution and better sensitivity and thus can be applied to targets detection, recognition, and tracking. Missile-borne forward-looking SAR (MFL-SAR) is a new and special MIMO radar mode. It has advantage of two-dimensional (2D) imaging capability in forward direction over monostatic missile-borne SAR and airborne SAR. However, it is difficult to obtain accurate 2D frequency spectrum of the target echo signal due to the high velocity and descending height of this platform, which brings a lot of obstacles to imaging algorithm design. Therefore, a new imaging algorithm for MFL-SAR configuration based on the method of series reversion is proposed in this paper. This imaging method can implement range compression, secondary range compression (SRC), and range cell migration correction (RCMC) effectively. Finally, some simulations of point targets and comparison results confirm the efficiency of our proposed algorithm

    Molecular dynamics simulations of oil recovery from dolomite slit nanopores enhanced by CO2 and N2 injection

    Get PDF
    Shale oil reservoirs are dominated by micro-and nanopores, which greatly impede the oil recovery rates. CO2 and N2 injection have proven to be highly effective approaches to enhance oil recovery from low-permeability shale reservoirs, and also represent great potential for CO2 sequestration. Therefore, a better understanding of the mechanism of shale oil recovery enhanced by CO2 and N2 is of great importance to achieve maximum shale oil productivity. In this paper, the adsorption behavior of shale oil and the mechanism of enhancing shale oil recovery by CO2 and N2 flooding in dolomite slit pores are investigated by performing nonequilibrium molecular dynamics simulations. Considering the shale oil adsorption behavior, mass density distribution is analyzed and the results indicate that a symmetric density distribution of the oil regarding the center in the slit pore along the x-axis can be obtained. The maximum density of the adsorbed layer nearest to the slit wall is 1.310 g/cm3 for C8H18 , which is about 2.0 times of that for bulk oil density in the middle area of slit pore. The interaction energy and radial distribution functions (between oil and CO2 , and between oil and N2 ) are calculated to display the displacement behavior of CO2 and N2 flooding. It is found that CO2 and N2 play different roles: CO2 has strong solubility, diffusivity and a higher interaction energy with dolomite wall, and the oil displacement efficiency of CO2 reaches 100% after 1 ns of flooding; however, during N2 flooding, the oil displacement efficiency is 87.3% after 4 ns of flooding due to the lower interaction energy between N2 and dolomite and that between N2 and oil.Cited as: Guo, H., Wang, Z., Wang, B., Zhang, Y., Meng, H., Sui H. Molecular dynamics simulations of oil recovery from dolomite slit nanopores enhanced by CO2 and N2 injection. Advances in Geo-Energy Research, 2022, 6(4): 306-313. https://doi.org/10.46690/ager.2022.04.0

    The value of diffusion kurtosis imaging, diffusion weighted imaging and 18F-FDG PET for differentiating benign and malignant solitary pulmonary lesions and predicting pathological grading

    Get PDF
    ObjectiveTo explore the value of PET/MRI, including diffusion kurtosis imaging (DKI), diffusion weighted imaging (DWI) and positron emission tomography (PET), for distinguishing between benign and malignant solitary pulmonary lesions (SPLs) and predicting the histopathological grading of malignant SPLs.Material and methodsChest PET, DKI and DWI scans of 73 patients with SPL were performed by PET/MRI. The apparent diffusion coefficient (ADC), mean diffusivity (MD), mean kurtosis (MK), maximum standard uptake value (SUVmax), metabolic total volume (MTV) and total lesion glycolysis (TLG) were calculated. Student’s t test or the Mann–Whitney U test was used to analyze the differences in parameters between groups. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy. Logistic regression analysis was used to evaluate independent predictors.ResultsThe MK and SUVmax were significantly higher, and the MD and ADC were significantly lower in the malignant group (0.59 ± 0.13, 10.25 ± 4.20, 2.27 ± 0.51[×10-3 mm2/s] and 1.35 ± 0.33 [×10-3 mm2/s]) compared to the benign group (0.47 ± 0.08, 5.49 ± 4.05, 2.85 ± 0.60 [×10-3 mm2/s] and 1.67 ± 0.33 [×10-3 mm2/s]). The MD and ADC were significantly lower, and the MTV and TLG were significantly higher in the high-grade malignant SPLs group (2.11 ± 0.51 [×10-3 mm2/s], 1.35 ± 0.33 [×10-3 mm2/s], 35.87 ± 42.24 and 119.58 ± 163.65) than in the non-high-grade malignant SPLs group (2.46 ± 0.46 [×10-3 mm2/s], 1.67 ± 0.33[×10-3 mm2/s], 20.17 ± 32.34 and 114.20 ± 178.68). In the identification of benign and malignant SPLs, the SUVmax and MK were independent predictors, the AUCs of the combination of SUVmax and MK, SUVmax, MK, MD, and ADC were 0.875, 0.787, 0.848, 0.769, and 0.822, respectively. In the identification of high-grade and non-high-grade malignant SPLs, the AUCs of MD, ADC, MTV, and TLG were 0.729, 0.680, 0.693, and 0.711, respectively.ConclusionDWI, DKI, and PET in PET/MRI are all effective methods to distinguish benign from malignant SPLs, and are also helpful in evaluating the pathological grading of malignant SPLs

    Regulation of the expression of DAPK1 by SUMO pathway.

    Get PDF
    Death Associated Protein Kinase 1 (DAPK1) is an important signaling kinase mediating the biological eect of multiple natural biomolecules such as IFN-, TNF-, curcumin, etc. DAPK1 is degraded through both ubiquitin-proteasomal and lysosomal degradation pathways. To investigate the crosstalk between these two DAPK1 degradation pathways, we carried out a screen using a set of ubiquitin E2 siRNAs at the presence of Tuberous Sclerous 2 (TSC2) and identified that the small ubiquitin-like molecule (SUMO) pathway is able to regulate the protein levels of DAPK1. Inhibition of the SUMO pathway enhanced DAPK1 protein levels and the minimum domain of DAPK1 proteinrequired for this regulation is the kinase domain, suggesting that the SUMO pathway regulates DAPK1 protein levels independent of TSC2. Suppression of the SUMO pathway did not enhance DAPK1 protein stability. In addition, mutation of the potential SUMO conjugation sites on DAPK1 kinase domain did not alter its protein stability or response to SUMO pathway inhibition. These data suggested that the SUMO pathway does not regulate DAPK1 protein degradation. The exact molecular mechanism underlying this regulation is yet to be discovered

    CMRxRecon: An open cardiac MRI dataset for the competition of accelerated image reconstruction

    Full text link
    Cardiac magnetic resonance imaging (CMR) has emerged as a valuable diagnostic tool for cardiac diseases. However, a limitation of CMR is its slow imaging speed, which causes patient discomfort and introduces artifacts in the images. There has been growing interest in deep learning-based CMR imaging algorithms that can reconstruct high-quality images from highly under-sampled k-space data. However, the development of deep learning methods requires large training datasets, which have not been publicly available for CMR. To address this gap, we released a dataset that includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects. Imaging studies include cardiac cine and mapping sequences. Manual segmentations of the myocardium and chambers of all the subjects are also provided within the dataset. Scripts of state-of-the-art reconstruction algorithms were also provided as a point of reference. Our aim is to facilitate the advancement of state-of-the-art CMR image reconstruction by introducing standardized evaluation criteria and making the dataset freely accessible to the research community. Researchers can access the dataset at https://www.synapse.org/#!Synapse:syn51471091/wiki/.Comment: 14 pages, 8 figure
    corecore