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Multiple-inputmultiple-output (MIMO) radar imaging can provide higher resolution and better sensitivity and thus can be applied
to targets detection, recognition, and tracking. Missile-borne forward-looking SAR (MFL-SAR) is a new and special MIMO radar
mode. It has advantage of two-dimensional (2D) imaging capability in forward direction over monostatic missile-borne SAR and
airborne SAR. However, it is difficult to obtain accurate 2D frequency spectrum of the target echo signal due to the high velocity
and descending height of this platform, which brings a lot of obstacles to imaging algorithm design. Therefore, a new imaging
algorithm for MFL-SAR configuration based on the method of series reversion is proposed in this paper. This imaging method
can implement range compression, secondary range compression (SRC), and range cell migration correction (RCMC) effectively.
Finally, some simulations of point targets and comparison results confirm the efficiency of our proposed algorithm.

1. Introduction

Radar imaging is an emerging technology which can provide
a high resolution radar image of targets in long distance inde-
pendent of weather conditions and sunlight illumination,
and it is being more and more widely used in military and
civil fields [1–5]. Multiple-input multiple-output (MIMO)
radar is an antenna system which transmits multiple probing
signals via its antennas and scattering signals are received by
distributed receiving antennas [6–9]. Application of MIMO
radar to radar imaging could provide higher resolution
and better sensitivity and thus can be applied to detection,
recognition, and tracking of targets [10–12].

We consider a new MIMO radar system, that is, missile-
borne multistatic synthetic aperture radar (MFL-SAR) as
shown in Figure 1, in which transmitting signals are transmit-
ted simultaneously and the reflected signals at receivers can
be processed independently. This configuration can be
applied to missile precision terminal guidance because of its
advantages of 2D imaging ability in forward direction over
monostatic SAR [13, 14]. Missile precision terminal guidance
could conduct good performance in targets detection, recog-
nition, orientation tracking, and attacking [15, 16]. During the
moving period, transmitter and receiver cooperate with each

other, and transmitter irradiates the imaging area with some
squint angle, while receiver receives the target echo signals in
forward-lookingmode.Without loss of generality and for the
convenience of description, missile-borne bistatic forward-
looking SAR (MBFL-SAR) configuration is considered in this
paper.

Effective and efficient imaging in this configuration is an
important technology for missile precision terminal guid-
ance; therefore, imaging algorithm for MBFL-SAR is neces-
sary and essential. Many investigations on SAR imaging have
been published and some appealing approaches have been
suggested. Range-Doppler algorithm (RDA) [17–19] and
chirp scaling algorithm (CSA) [20] are conventional mono-
static algorithms which are applied to those configurations
that have azimuth-invariant property. For bistatic SAR imag-
ing, some other methods have been proposed. Soumekh
derived the 2D spectrum expression of bistatic SAR and
proposed a new RMA for bistatic configuration through two
approximations in the derivation [21–23]. But this algorithm
is limited to the bistatic parallel configuration because of
identical velocity vectors of transmitter and receiver. Neo
et al. and Davidson et al. proposed a nonlinear CS algorithm
in [24, 25], but it neglected space-variance of Doppler fre-
quency in range direction and influence of secondary range
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Figure 1: An illustration of MFL-SAR configuration.

compression (SRC) on imaging. A simple operator named
“dip move out” (DMO) is used to transform a bistatic survey
into a monostatic one in [26, 27]. The initial dataset is used
to convolve with the so-called smile, a short operator, and the
output is the equivalent monostatic data. Unfortunately, the
so-called smile is space-variant both in range direction and in
azimuth direction, and the changes of wave number in range
direction are also neglected.

An imaging algorithm based on the method of series
reversion [28, 29] for MBFL-SAR is suggested in this paper.
By unfolding the Doppler frequency, the stationary phase
point expansion coefficients are obtained,whichmakes it easy
to get the 2D frequency spectrum of the target echo signal.
Then imaging method can be obtained based on the 2D fre-
quency spectrum. Range compression is implemented in the
range frequency domain, and SRC can be finished in the 2D
frequency domain. The RCM can be corrected in the range-
Doppler domain and finally the imaging result can be got
through azimuth compression.

The rest of this paper is organized as follows. Geometric
configuration and signalmodel ofMBFL-SAR are introduced
in Section 2. Also, the difficulty in direct-using the principle
of stationary phase (POSP) is discussed. In Section 3, the
derivation of 2D frequency spectrum of the target echo
signal is given based on the accurate approximation of the
slant range history, in which the high-order terms cannot be
ignored owing to the presence of high velocities and accel-
erations. The proposed imaging algorithm is described in
Section 4 and numerical simulations are achieved to show the
effectiveness of our proposed method, and the results
are given in Section 5. Finally, conclusions are drawn in
Section 6.

2. Geometric Configuration and Signal Model

Figure 2 depicts geometric configuration of MBFL-SAR, in
which both transmitter and receiver travel curvilinear
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Figure 2: Geometric configuration of MBFL-SAR.

descending motion. 𝑂 is the origin of coordinates, 𝑂󸀠 is the
projection of transmitter when the slow time 𝑡

𝑚
= 0, and

|𝑂𝑂
󸀠
| = 𝑑. Transmitter is moving with the original velocity

vectors V⃗
𝑡0
= (V
𝑡𝑥0
, V
𝑡𝑦0
, V
𝑡𝑧0
) and acceleration vectors ⃗𝑎

𝑡
=

(𝑎
𝑡𝑥
, 𝑎
𝑡𝑦
, 𝑎
𝑡𝑧
). And the ones of receiver are V⃗

𝑟0
= (0, V

𝑟𝑦0
, V
𝑟𝑧0
)

and ⃗𝑎
𝑟
= (0, 𝑎

𝑟𝑦
, 𝑎
𝑟𝑧
), respectively. There exists an included

angle 𝜓 between the two planes in which the two platforms
travel.The transmitter keeps illuminating the imaging area in
side-looking mode, and the receiver looks in forward direc-
tion. The receiver antenna gets the echo signal reflected
from the imaging area which the receiver moves towards.
Assume that transmitter and receiver are at 𝑇

0
(𝑑, 0,𝐻

𝑇
) and

𝑅
0
(0, 0,𝐻

𝑅
) when 𝑡

𝑚
= 0, and velocity vectors of them at

the moment 𝑡
𝑚
(𝑡
𝑚
̸= 0) are V⃗

𝑡
= (V
𝑡𝑥
, V
𝑡𝑦
, V
𝑡𝑧
) and V⃗

𝑟
= (V
𝑟𝑥
,

V
𝑟𝑦
, V
𝑟𝑧
), respectively, where V

𝑡𝑥
, V
𝑡𝑦
, and V

𝑡𝑧
denote the veloc-

ity components of V⃗
𝑡
in the directions𝑥,𝑦, and 𝑧, respectively;

and V
𝑟𝑥
, V
𝑟𝑦
, and V

𝑟𝑧
are the ones of V⃗

𝑟
, respectively.

The bistatic slant range at time instant 𝑡
𝑚
can be obtained

as

𝑅
𝑏𝑓
(𝑡
𝑚
) = 𝑅
𝑇
(𝑡
𝑚
) + 𝑅
𝑅
(𝑡
𝑚
)

= √(𝑥
𝑡
− 𝑥
𝑝
)
2

+ (𝑦
𝑡
− 𝑦
𝑝
)
2

+ 𝑧
2

𝑡

+ √(𝑥
𝑟
− 𝑥
𝑝
)
2

+ (𝑦
𝑟
− 𝑦
𝑝
)
2

+ 𝑧2
𝑟
,

(1)

with

𝑥
𝑡
= 𝑑 + V

𝑡𝑥0
𝑡
𝑚
+ 0.5𝑎

𝑡𝑥
𝑡
2

𝑚
, 𝑥

𝑟
= 0,

𝑦
𝑡
= V
𝑡𝑦0
𝑡
𝑚
+ 0.5𝑎

𝑡𝑦
𝑡
2

𝑚
,

𝑦
𝑟
= V
𝑟𝑦0
𝑡
𝑚
+ 0.5𝑎

𝑟𝑦
𝑡
2

𝑚
,

𝑧
𝑡
= 𝐻
𝑇
+ V
𝑡𝑧0
𝑡
𝑚
+ 0.5𝑎

𝑡𝑧
𝑡
2

𝑚
,

𝑧
𝑟
= 𝐻
𝑅
+ V
𝑟𝑧0
𝑡
𝑚
+ 0.5𝑎

𝑟𝑧
𝑡
2

𝑚
,

(2)

where 𝑥
𝑡
, 𝑦
𝑡
, and 𝑧

𝑡
represent the locations of transmitter in

directions 𝑥, 𝑦, and 𝑧, respectively; and 𝑥
𝑟
, 𝑦
𝑟
, and 𝑧

𝑟
are the

ones of receiver, respectively.
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Suppose that the transmitted waveform is the linear fre-
quency modulation (LFM), and scattering from 𝑃(𝑥

𝑝
, 𝑦
𝑝
, 0)

to the receiver can be written as

𝑠 (𝑡̂, 𝑡
𝑚
) = 𝑤
𝑟
(𝑡̂ −

𝑅
𝑏𝑓
(𝑡
𝑚
)

𝑐
)𝑤
𝑎
(𝑡
𝑚
)

× exp[

[

𝑗𝜋𝛾(𝑡̂ −
𝑅
𝑏𝑓
(𝑡
𝑚
)

𝑐
)

2

]

]

× exp[−𝑗2𝜋
𝜆
𝑅
𝑏𝑓
(𝑡
𝑚
)] ,

(3)

where 𝑡̂ is the range time, 𝜆 is the wavelength, 𝑐 is the speed of
light, and 𝛾 is the chirp rate.𝑤

𝑟
(⋅) and𝑤

𝑎
(⋅) are the range and

azimuth envelopes, respectively.
By applying a range fast Fourier transform (FFT) to (3),

we can obtain

𝑠 (𝑓
𝑟
, 𝑡
𝑚
) = 𝑊

𝑟
(𝑓
𝑟
) 𝑤
𝑎
(𝑡
𝑚
) ⋅ exp(−𝑗𝜋

𝑓
2

𝑟

𝛾
)

⋅ exp [−𝑗2𝜋
𝑐
(𝑓
𝑟
+ 𝑓
𝑐
) 𝑅
𝑏𝑓
(𝑡
𝑚
)] ,

(4)

where 𝑓
𝑟
represents the range frequency.

The 2D frequency spectrum of the echo signal can be
obtained by an azimuth FFT, expressed as

𝑆 (𝑓
𝑟
, 𝑓
𝑎
) = ∫

+∞

−∞

𝑠 (𝑓
𝑟
, 𝑡
𝑚
) exp (−𝑗2𝜋𝑓

𝑎
𝑡
𝑚
) 𝑑𝑡
𝑚
, (5)

where 𝑓
𝑎
represents the azimuth frequency, and the phase in

(5) can be written as

Θ(𝑡
𝑚
) = −𝜋

𝑓
2

𝑟

𝛾
−
2𝜋

𝑐
(𝑓
𝑟
+ 𝑓
𝑐
) 𝑅
𝑏𝑓
(𝑡
𝑚
) − 2𝜋𝑓

𝑎
𝑡
𝑚
. (6)

By applying the POSP, we have

−
2𝑐

𝑓
𝑐
+ 𝑓
𝑟

𝑓
𝑎
=

𝛼
𝑡1
+ 2𝛼
𝑡2
𝑡
𝑚
+ 3𝛼
𝑡3
𝑡
2

𝑚
+ 4𝛼
𝑡4
𝑡
3

𝑚

√𝑅
2

𝑡0
+ 𝛼
𝑡1
𝑡
𝑚
+ 𝛼
𝑡2
𝑡2
𝑚
+ 𝛼
𝑡3
𝑡3
𝑚
+ 𝛼
𝑡4
𝑡4
𝑚

+
𝛼
𝑟1
+ 2𝛼
𝑟2
𝑡
𝑚
+ 3𝛼
𝑟3
𝑡
2

𝑚
+ 4𝛼
𝑟4
𝑡
3

𝑚

√𝑅
2

𝑟0
+ 𝛼
𝑟1
𝑡
𝑚
+ 𝛼
𝑟2
𝑡2
𝑚
+ 𝛼
𝑟3
𝑡3
𝑚
+ 𝛼
𝑟4
𝑡4
𝑚

,

(7)

with

𝑅
𝑡0
= √(𝑑 − 𝑥

𝑝
)
2

+ 𝑦2
𝑝
+ 𝐻
2

𝑇
,

𝑅
𝑟0
= √𝑥2

𝑝
+ 𝑦2
𝑝
+ 𝐻
2

𝑅
,

𝛼
𝑡1
= 2 [V

𝑡𝑥0
(𝑑 − 𝑥

𝑝
) − 𝑦
𝑝
V
𝑡𝑦0
+ V
𝑡𝑧0
𝐻
𝑇
] ,

𝛼
𝑟1
= 2 (−V

𝑟𝑦0
𝑦
𝑝
+ V
𝑟𝑧0
𝐻
𝑅
) ,

𝛼
𝑡2
= V2
𝑡𝑥0
+ 𝑎
𝑡𝑥
(𝑑 − 𝑥

𝑝
) + V2
𝑡𝑦0
− 𝑎
𝑡𝑦
𝑦
𝑝
+ V2
𝑡𝑧0
+ 𝑎
𝑡𝑧
𝐻
𝑇
,

𝛼
𝑟2
= V2
𝑟𝑦0
+ V2
𝑟𝑧0
− 𝑎
𝑟𝑦
𝑦
𝑝
+ 𝑎
𝑟𝑧
𝐻
𝑅
,

𝛼
𝑡3
= 𝑎
𝑡𝑥
V
𝑡𝑥0
+ 𝑎
𝑡𝑦
V
𝑡𝑦0
+ 𝑎
𝑡𝑧
V
𝑡𝑧0
,

𝛼
𝑟3
= 𝑎
𝑟𝑦
V
𝑟𝑦0
+ 𝑎
𝑟𝑧
V
𝑟𝑧0
,

𝛼
𝑡4
=
1

4
(𝑎
2

𝑡𝑥
+ 𝑎
2

𝑡𝑦
+ 𝑎
2

𝑡𝑧
) ,

𝛼
𝑟4
=
1

4
(𝑎
2

𝑟𝑦
+ 𝑎
2

𝑟𝑧
) .

(8)

If Θ󸀠(𝑡∗
𝑚
) = 0, we can get the stationary point 𝑡∗

𝑚
, but we

can see that it is very difficult to determine the stationary
point 𝑡∗

𝑚
from (7), so 2D frequency spectrum of the echo

signal cannot be obtained through direct POSP. Some other
approaches should be taken to get 2D frequency spectrum of
the echo signal.

3. Derivation of 2D Frequency Spectrum
Based on Series Reversion

According to [28], it needs to take efficient approximation of
the slant range 𝑅

𝑏𝑓
(𝑡
𝑚
) before using the method of series

reversion. Because of the high velocity and acceleration in the
missile platform, it needs to keep the terms up to the third-
order

𝑅
𝑏𝑓
(𝑡
𝑚
) = 𝑅
𝑏𝑓0
+ 𝑘
1
𝑡
𝑚
+ 𝑘
2
𝑡
2

𝑚
+ 𝑘
3
𝑡
3

𝑚
+ ⋅ ⋅ ⋅ , (9)

with

𝑅
𝑏𝑓0

= 𝑅
𝑡0
+ 𝑅
𝑟0
,

𝑘
1
=
𝛼
𝑡1

2𝑅
𝑡0

+
𝛼
𝑟1

2𝑅
𝑟0

,

𝑘
2
=
𝛼
𝑡2

2𝑅
𝑡0

−
𝛼
2

𝑡1

8𝑅
3

𝑡0

+
𝛼
𝑟2

2𝑅
𝑟0

−
𝛼
2

𝑟1

8𝑅
3

𝑟0

,

𝑘
3
=
𝛼
𝑡3

2𝑅
𝑡0

−
𝛼
𝑡1
𝛼
𝑡2

4𝑅
3

𝑡0

+
𝛼
3

𝑡1

16𝑅
5

𝑡0

+
𝛼
𝑟3

2𝑅
𝑟0

−
𝛼
𝑟1
𝛼
𝑟2

4𝑅
3

𝑟0

+
𝛼
3

𝑟1

16𝑅
5

𝑟0

.

(10)

To apply the method of series reversion, the linear range
cell migration (LRCM) should be removed firstly. Let
Θ
󸀠
(𝑡
𝑚
) = 0, we have

−
𝑐

𝑓
𝑐
+ 𝑓
𝑟

𝑓
𝑎
= 2𝑘
2
𝑡
𝑚
+ 3𝑘
3
𝑡
2

𝑚
. (11)

Then through the method of series reversion, the expres-
sion of the stationary phase point can be expressed by
unfolded Doppler frequency as

𝑡
𝑚
(𝑓
𝑎
) = 𝐴

1
(−

𝑐

𝑓
𝑐
+ 𝑓
𝑟

𝑓
𝑎
) + 𝐴

2
(−

𝑐

𝑓
𝑐
+ 𝑓
𝑟

𝑓
𝑎
)

2

+ ⋅ ⋅ ⋅ ,

(12)

where 𝐴
1
= 1/2𝑘

2
, 𝐴
2
= −3𝑘

3
/8𝑘
3

2
.
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Having obtained the stationary phase point, we should
reintroduce the LRCM term to calculate 2D frequency spec-
trum of the echo signal. By (5), (6), and (12), 2D frequency
spectrum of the echo signal is written as

𝑆MSR (𝑓𝑟, 𝑓𝑎)

= 𝑊
𝑟
(𝑓
𝑟
)𝑊
𝑎
(𝑓
𝑎
) exp[−𝑗𝜋

𝑓
2

𝑟

𝛾
] exp [𝑗Φ (𝑓

𝑟
, 𝑓
𝑎
)] ,

(13)

where

Φ(𝑓
𝑟
, 𝑓
𝑎
) = −2𝜋

𝑓
𝑐
+ 𝑓
𝑟

𝑐
𝑅
𝑏𝑓0
− 𝜋

𝑓
2

𝑟

𝛾

+ 2𝜋
𝑐

4𝑘
2
(𝑓
𝑐
+ 𝑓
𝑟
)
(𝑓
𝑎
+ (𝑓
𝑐
+ 𝑓
𝑟
)
𝑘
1

𝑐
)

2

+ 2𝜋
𝑘
3
𝑐
2

8𝑘
3

2
(𝑓
𝑐
+ 𝑓
𝑟
)
2
(𝑓
𝑎
+ (𝑓
𝑐
+ 𝑓
𝑟
)
𝑘
1

𝑐
)

3

.

(14)

It can be seen that the coefficient of the third-term in
the slant range is included in Φ(𝑓

𝑟
, 𝑓
𝑎
), which indicates the

presence of the high-order terms introduced by high velocity
and acceleration of this configuration into 2D frequency spec-
trum. The imaging algorithm can be designed based on 2D
frequency spectrum, which will be discussed in the next
section.

4. Imaging Algorithm for MBFL-SAR

Todesign imaging algorithmefficiently, the phase term in (14)
should be decomposed using Taylor series firstly because of
the range/azimuth frequency coupling in 2D frequency spec-
trum, and the series expansions are as follows:

Φ(𝑓
𝑟
, 𝑓
𝑎
) ≈ Φ

𝑟𝑔
(𝑓
𝑟
) + Φ
𝑎
(𝑓
𝑎
) + Φrcm (𝑓𝑟, 𝑓𝑎)

+ Φsrc (𝑓𝑟, 𝑓𝑎) + Φres,
(15)

with

Φ
𝑟𝑔
(𝑓
𝑟
) = −𝜋

𝑓
2

𝑟

𝛾
, (16)

Φ
𝑎
(𝑓
𝑎
)

= 2𝜋{
1

4𝑘
2

(
𝑘
2

1

𝑐
+ 2𝑘
1
𝑓
𝑎
+
𝑐

𝑓
𝑐

𝑓
2

𝑎
)

+
𝑘
3

8𝑘
3

2

[
𝑘
3

1

𝑐
+ 3𝑘
2

1
𝑓
𝑎
+ 3𝑘
1

𝑐

𝑓
𝑐

𝑓
2

𝑎
+ (

𝑐

𝑓
𝑐

)

2

𝑓
3

𝑎
]} ,

(17)

Φrcm (𝑓𝑟, 𝑓𝑎)

= 2𝜋𝑓
𝑟
{−
𝑅
𝑏𝑓0

𝑐
+
1

4𝑘
2

[
𝑘
2

1

𝑐
− 𝑐(

𝑓
𝑎

𝑓
𝑐

)

2

]

+
𝑘
3

8𝑘
3

2

[
𝑘
3

1

𝑐
− 3𝑘
1
𝑐(
𝑓
𝑎

𝑓
𝑐

)

2

− 2𝑐
2
(
𝑓
𝑎

𝑓
𝑐

)

3

]} ,

(18)

Table 1: Parameters used in the simulations.

Wavelength 0.02m

Bandwidth 50MHz

Sampling frequency 100MHz

Pulse duration 2 𝜇s

Scene center location (0, 4500, 0)

Fringe point location (300, 4800, 0)

𝜓 10∘

PRF 10KHz

𝐻
𝑇

35 km

𝐻
𝑅

30 km

V⃗
𝑡0

(434.1, 2462.0, −2000) m/s

⃗𝑎
𝑡

(−8.7, −49.2, 30) m/s2

V⃗
𝑟0

(0, 2500, −2000) m/s

⃗𝑎
𝑟

(0, −50, 30) m/s2

Φsrc (𝑓𝑟, 𝑓𝑎)

= 2𝜋{
1

4𝑘
2

𝑐

𝑓
𝑐

((
𝑓
𝑟

𝑓
𝑐

)

2

− (
𝑓
𝑟

𝑓
𝑐

)

3

)𝑓
2

𝑎

+
𝑘
3

8𝑘
3

2

[3𝑘
1

𝑐

𝑓
𝑐

((
𝑓
𝑟

𝑓
𝑐

)

2

− (
𝑓
𝑟

𝑓
𝑐

)

3

)𝑓
2

𝑎

+ (
𝑐

𝑓
𝑐

)

2

(3(
𝑓
𝑟

𝑓
𝑐

)

2

− 4(
𝑓
𝑟

𝑓
𝑐

)

3

)𝑓
3

𝑎
]} ,

(19)

Φres = −2𝜋𝑓𝑐
𝑅
𝑏𝑓0

𝑐
. (20)

The term in (16) represents the range compression term
which is independent of the azimuth frequency 𝑓

𝑎
. Thus the

data can be range-compressed in the range frequency azim-
uth time domain or in the 2D frequency domain alternatively.
The term in (17) denotes the azimuth compression term,
dependent only on 𝑓

𝑎
and used in the azimuth compression.

It should be implemented after range compression and
RCMC in the range time azimuth frequency domain as 𝑘-coe-
fficients are range variant.The term in (18) indicates the RCM
termwhich is linearly dependent on the range frequency𝑓

𝑟
. It

needs to be compensated because of the coupling between
range and azimuth. Similar to the azimuth compression term,
this term should be implemented in the range time azimuth
frequency domain. Note that −2𝜋(𝑅

𝑏𝑓0
/𝑐)𝑓
𝑟
is the linear

phase representing the location of target point; the energy
of the target will be focused within the corresponding range
cell after RCMC. It should be paid attention to in the imaging
process. The term in (19) is the SRC term which indicates the
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Table 2: Image quality parameters using the proposed method.

Parameter Theoretical one Center point Fringe point

Azimuth Range Azimuth Range Azimuth Range

PSLR (dB) −13.26 −13.26 −13.27 −13.15 −13.25

ISLR (dB) −9.8 −10.07 −9.97 −10.04 −9.97
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Figure 3: Center point results using the proposed range model.

coupling between𝑓
𝑟
and𝑓
𝑎
. It may cause significant degrada-

tion in the imaging resolution if uncompensated and is com-
pensated in the 2D frequency domain. The last residual term
in (20) is independent of the range frequency or the azimuth
frequency. It has no effect on the imaging focus and thus can
be neglected in MBFL-SAR configuration.

Consequently, the main procedure of the proposed algo-
rithm follows the following steps.

(1) Use 2D FFT to transform the echo signal to 2D
frequency domain as shown in (13).

(2) Design the match filtering function in the 2D fre-
quency domain to compensate the range compression

term, the SRC term, and the residual term. The
match filtering function𝐻

1
(𝑓
𝑟
, 𝑓
𝑎
) can be obtained as

follows:

𝐻
1
(𝑓
𝑟
, 𝑓
𝑎
) = exp [−𝑗 (Φ

𝑟𝑔
(𝑓
𝑟
) + Φsrc (𝑓𝑟, 𝑓𝑎) + Φres)] .

(21)

(3) Apply range inverse fast Fourier transform (IFFT) to
convert the signal to the range time azimuth fre-
quency domain and correct the RCM term.

(4) Finish azimuth compression bymultiplying the range
time azimuth frequency domain signal with the
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Figure 4: Fringe point results using the proposed range model.
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Figure 5: Contour plots comparison using different range models.
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Figure 6: Azimuth impulse responses comparison using different range models.

azimuth match filtering function, which can be
obtained as follows:

𝐻
2
(𝑡
𝑚
, 𝑓
𝑎
) = exp [−𝑗 (Φ

𝑎
(𝑓
𝑎
))] . (22)

(5) Perform azimuth IFFT to obtain a well-focused SAR
image.

5. Simulations and Results

In this section, several examples are provided to illustrate the
performance of the proposed method. Because of the com-
plex configuration, the high-order terms in the slant range
cannot be ignored. If inappropriately approximated, the
imaging focusing resolution may be affected significantly.
Some simulations are conducted to compare the influences of
keeping the terms up to the quadratic term (quadratic range
model) and the higher order term (proposed range model).
Parameters used in the simulations are listed in Table 1.
The imaging results of center point and fringe point in the
imaging area using the proposed range model are given in
Figures 3 and 4. In order to confirm the necessity and validity
using the higher order range model in this special configu-
ration, some simulations are also conducted to compare the
differences using the quadratic rangemodel and the proposed
range model, and the results are shown in Figures 5 and 6
(here, the center point is selected in comparison).

Figure 3 depicts the results of the center point using
the proposed range model. Figure 3(a) is the 2D impulse
response; Figures 3(b) and 3(c) are the azimuth impulse
response and the range impulse response, respectively. The
2D impulse response of the fringe target point using the
proposed range model is shown in Figure 4(a), and the
azimuth impulse response and the range impulse response are
given in Figures 4(b) and 4(c), respectively. We can see from
Figures 3 and 4 that both center point and fringe point are
well focused in range direction and azimuth direction. For the

complexity of theMBFL-SAR configuration, if the slant range
is not approximated accurately enough, the phase term in the
2D frequency spectrum will not be compensated completely
in the azimuth direction. It is easy to find that the image
of the point target suffers from distortion and main-lobe
broadening when the slant range keeps the terms up to the
quadratic term in Figures 5(a) and 6(a). On the other hand, if
we are using the proposed rangemodel, the imaging focusing
performance can be obviously improved, as given in Figures
5(b) and 6(b). It is obvious that the image is well focused
in the azimuth direction, which confirms it necessary to
approximate appropriately in the MBFL-SAR configuration.

Table 2 lists the image quality parameters of the center
point and fringe point using the proposed method to further
illustrate the validity of the proposed algorithm. PSLR and
ISLR represent peak side-lobe ratio and integrated side-lobe
ratio, respectively. Besides, the theoretical PSLR and ISLR are
−13.26 dB and−9.8 dB, respectively.We can see that the image
quality parameters of both the center point and fringe point
using our proposed method are all close to the theoretical
ones, which indicate satisfactory imaging results and further
validate the effectiveness and feasibility.

6. Conclusions

In this paper, we developed an imaging algorithm for MBFL-
SAR configuration, a special MIMO radar mode.TheMBFL-
SAR imaging geometric model is established and the signal
model is analyzed firstly. The high-order term in the slant
range cannot be neglected because of the presence of high
velocity and acceleration and the addition of two square-
root terms. Also, the difficulty in direct-using the POSP in
this configuration is discussed. Then 2D frequency spectrum
is deduced using the method of series reversion based on
the appropriate approximation of the slant range. Based on
the derived spectrum, the corresponding imaging method is
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developed. The high-order term introduced from this con-
figuration is compensated, together with range compression,
at the beginning of the algorithm. RCMC is finished in the
range time azimuth frequency domain as the range-variant 𝑘-
coefficients.The focused SAR image can be obtained through
the azimuth compression. The feasibility and efficiency of
the proposed approach are validated with the simulation
experiments.
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