177 research outputs found

    Navajo Therapeutic Jurisprudence

    Get PDF

    Harmony among the People: Torts and Indian Courts

    Get PDF
    Indian Court

    Navajo Therapeutic Jurisprudence

    Get PDF

    Harmony among the People: Torts and Indian Courts

    Get PDF
    Indian Court

    The Navajo Peacemaker Court: Deference to the Old and Accommodation to the New

    Get PDF

    Indigenous Law in North America in the Wake of Conquest

    Get PDF

    Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction

    Get PDF
    We present an efficient and rigorous numerical procedure for calculating the elastodynamic response of a fault subjected to slow tectonic loading processes of long duration within which there are episodes of rapid earthquake failure. This is done for a general class of rate- and state-dependent friction laws with positive direct velocity effect. The algorithm allows us to treat accurately, within a single computational procedure, loading intervals of thousands of years and to calculate, for each earthquake episode, initially aseismic accelerating slip prior to dynamic rupture, the rupture propagation itself, rapid post seismic deformation which follows, and also ongoing creep slippage throughout the loading period in velocity-strengthening fault regions. The methodology is presented using the two-dimensional (2-D) antiplane spectral formulation and can be readily extended to the 2-D in-plane and 3-D spectral formulations and, with certain modifications, to the space-time boundary integral formulations as well as to their discretized development using finite difference or finite element methods. The methodology can be used to address a number of important issues, such as fault operation under low overall stress, interaction of dynamic rupture propagation with pore pressure development, patterns of rupture propagation in events nucleated naturally as a part of a sequence, the earthquake nucleation process, earthquake sequences on faults with heterogeneous frictional properties and/or normal stress, and others. The procedure is illustrated for a 2-D crustal strike-slip fault model with depth-variable properties. For lower values of the state-evolution distance of the friction law, small events appear. The nucleation phases of the small and large events are very similar, suggesting that the size of an event is determined by the conditions on the fault segments the event is propagating into rather than by the nucleation process itself. We demonstrate the importance of incorporating slow tectonic loading with elastodynamics by evaluating two simplified approaches, one with the slow tectonic loading but no wave effects and the other with all dynamic effects included but much higher loading rate

    A Process-Based Ammonia Emission Model for Confinement Animal Feeding Operations—Model Development

    Get PDF
    A process-based modeling approach was used to develop a comprehensive and predictive ammonia emission model for estimating ammonia emission rates from animal feeding operations. The ammonia emission model consists of farm emission model (FEM) and animal allocation processor (AAP) and can be used to calculate ammonia emission rates both from an individual AFO and from a group of AFOs and also allows predictions of different time scale resolutions. The Farm Emission Model (FEM) covers five animal species, including dairy, beef cattle, swine, layers, broilers, and turkeys. For each species, the FEM reflects different farm practices with regards to animal feeding, animal housing, manure collection and storage, and land application. The overall structure and selected model components of FEM are described in this paper. Some computer simulation results for a finishing swine farm are presented. The predicted ammonia emission rates are variable during the day and over the period of the year
    • …
    corecore