"W DIGITAL ACCESS TO
SN SCHOLARSHIP AT HARVARD

Elastodynamic Analysis for Slow Tectonic Loading with
Spontaneous Rupture Episodes on Faults with Rate- and State-
dependent Friction

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Lapusta, N., James R. Rice, Y ehuda Ben-Zion, and Gutuan Zheng.
2000. Elastodynamic analysis for slow tectonic loading with
spontaneous rupture episodes on faults with rate- and state-
dependent friction. Journal of Geophysical Research 105(B10):
23,765-23,789

Published Version  doi:10.1029/2000JB900250

Accessed February 17, 2015 3:28:50 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL .| nstRepos. 2668694

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL .InstRepos.dash.current.terms-of -
USeHLAA

(Article begins on next page)


http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2668694&title=Elastodynamic+Analysis+for+Slow+Tectonic+Loading+with+Spontaneous+Rupture+Episodes+on+Faults+with+Rate-+and+State-dependent+Friction
http://dx.doi.org/10.1029/2000JB900250
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2668694
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

published in: Journal of Geophysical Research,
vol. 105, pp. 23,765-23,789, 2000

LAPUSTA ETAL.: DYNAMIC ANALYSISOF SLOWLY LOADED FAULTS
To appeaiin the Journal of Geophysical Research, 2000.

Elastodynamic analysis for slow tectonic loading with
spontaneous rupture episodes on faults with rate- and
state-dependent friction

NadiaLapustaandJamesR. Rice

Division of EngineeringandApplied SciencesndDepartmenbf EarthandPlanetarySciencesHarvard
University, CambridgeMassachusetts

YehudaBen-Zion

Departmenbf EarthSciencesUniversity of SoutherrCalifornia,Los Angeles,California

GutuanZheng
TechnologyGroup,IBM, SomersNew York

Abstract. We presentinefficientandrigorousnumericalprocedurdor calculating
the elastodynamicesponsef afault subjectedo slow tectonicloadingprocesses
of long durationwithin which thereare episodeof rapid earthquak failure.
This is donefor a generalclassof rate-and state-dependertitiction laws with
positive directvelocity effect. The algorithmallows usto treataccuratelywithin
a singlecomputationaprocedurejoadingintervals of thousand®f yearsandto
calculate for eachearthquak episodejnitially aseismicacceleratingslip prior to
dynamicrupture,the rupturepropagationtself, rapid postseismicdeformation
which follows, and also ongoingcreepslippagethroughoutthe loading period

in velocity-strengthenindault regions. The methodologyis presentedisingthe
two-dimensiona(2-D) antiplanespectraformulationandcanbe readily extended
to the 2-D in-planeand3-D spectraformulationsand,with certainmodifications,
to the space-timeéboundaryintegral formulationsaswell asto their discretized
developmentusingfinite differenceor finite elementmethods.The methodology
canbeusedto address numberof importantissuessuchasfault operationunder
low overall stressjnteractionof dynamicrupturepropagatiorwith porepressure
developmentpatternof rupturepropagationn eventsnucleatecaturallyasapart
of a sequencethe earthquak nucleationprocessearthquak sequencesn faults
with heterogeneousictional propertiesand/ornormal stress,and others. The
proceduras illustratedfor a 2-D crustalstrike-slipfault modelwith depth-\ariable
properties. For lower valuesof the state-golution distanceof the friction law,
smalleventsappear The nucleationphase®f the smallandlarge eventsarevery
similar, suggestinghatthe sizeof aneventis determinedy the conditionson the
fault sgmentsthe eventis propagatingnto ratherthanby the nucleationprocess
itself. We demonstratehe importanceof incorporatingslow tectonicloading
with elastodynamicéy evaluatingtwo simplified approachespnewith the slow
tectonicloadingbut nowave effectsandtheotherwith all dynamiceffectsincluded
but muchhigherloadingrate.


James R. Rice 
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1. Introduction

Thepurposeof this paperis to establishanefficientalgo-
rithm for elastodynamishearuptureanalysisof afaultgov-
ernedby a generaklassof rate-andstate-dependefftiction
lawsin situationsfor whichthetotaltime of loadingis vastly
longerthanthetime for wavesto traversethe domainof in-
terest. Suchan algorithmis neededo study slow tectonic
loading processesluring which thereare episodef spon-
taneougapidfailurein earthquaks.Investigatinghesepro-
cessesequiresa specialapproachsincequasi-statianeth-
ods (usedfor calculatingslow deformationalprocesse®f
long duration)fail asinstabilities develop, while standard
elastodynami@algorithmsnot only userelatively smalltime
stepsbut alsorequireanincreasingamountof memoryand
computationatime at eachtime stepto take into accountall
the prior deformationhistory, and hencethey are excluded
from directimplementatiorfor investigatinglong-duration
processebecausef limitationson computingresources.

Varioussolutionshave beenproposed Oneof them[e.g.,
Okubo, 1989; Shibazaki and Matsu’ura, 1992]is to employ
a quasi-statianethodduring slow deformationandthento
switchto adynamicmethodonceaninstability starts.How-
ever, the abruptswitchingfrom oneschemeo anothemay
disruptthe naturaldevelopmenbf theinstability, andthe ef-
fectsof this disruptionon the furthermodelresponseannot
beeasilydeterminedvithin thisapproachOtherapproaches
[e.g., Cochard and Madariaga, 1996; Myers et al., 1996]
neglectall aseismidault slippage sothatstressingpetween
earthquaksis trivially modeled andgive the fault a "kick”
in the form of an abruptsmall strengthdrop, oncea crit-
ical stresshasbeenreachedsomavhere. At that stagean
elastodynamialgorithm calculatesrupture until arrestoc-
curs. This inevitably generates populationof small rup-
tures, and it requirescareful study of dependencen the
abruptstrengthdrop magnitudeto separatenvhich may be
physicalandwhich areartifactsof theabruptdrop[Cochard
and Madariaga, 1996]. Still anotheralternatve is to usea
plateloadingratewhich is only a few ordersof magnitude
lessthan representatie seismicslip rates,ratherthan the
roughly 10 ordersasfor naturalfaults,andto usestandard
elastodynamimumericalmethodologythroughout(like in
thework by Shaw and Rice [2000]). Thisis straightforvard
to implement,at leastif someprovision is madefor dissi-
patingwave enengy, but makesit difficult to suitablymodel
aseismicslip processeandcanblur thedistinctionbetween
aseismicslip beforeinstability andsmallearthquaks.

The developmentsof the presentwork provide an inte-
gratednumericalschemeallowing resolutionof both slow
andfastdeformationalphasesaswell asthe transitionbe-
tween them, within a single mathematicafframework for

elastodynamicsThe methodenableausto performcalcula-
tionsoverthousandef yearsof slow tectonicloading,punc-
tuatedby earthquaksandthe processesvhich leadto and
follow them. Thuswe canresole aseismicslip on velocity-
strengthenindault regions,advanceof slip into morefirmly
lockedzonesandslowly acceleratingseismicslippagethat
grows in spatial extent and will ultimately break out into
anearthquak but hasdurationthatis vastlylongerthanthe
seismiceventitself. We alsoresole all detailsof the break
out of rupture,its propagationrand arrest,andthe transient
postseismicslippagethatdevelops.

Our methodologyfor studying slow loading processes
hastwo main ingredients. The first is basedon the form
of elastodynamicelationsthatwe use,in which the depen-
denceof the inertial responseon prior deformationhistory
canbetruncatedsothatonly a (fixed)partof thedeformation
historybackfrom currenttime needgo be consideredThat
translatesnto fixedmemoryrequirementsandfixedamount
of computatiorpereachtime step.It alsomakesthecompu-
tation at eachtime stepindependendf how muchtime has
alreadybeensimulated. The methodologyis illustratedin
this paperfor thetwo-dimensional(2-D) antiplanecaseand
usesa spectrarepresentationf elastodynamicelationsde-
velopedby Perrin et al. [1995]in whichtheslip distribution
is representecs a Fourier seriesin the spatialcoordinate,
truncatedat large order, and fast Fourier transform(FFT)
methodsare used. The correspondingnethodologyfor the
2-D in-planeand3-D casess conceptuallyery similarand
canbeeasilyadoptedrom theonepresentedhereusing3-D
spectraklastodynamicelationsdevelopedby Geubelle and
Rice [1995] and Cochard and Rice [1997]. Our algorithm
canalsobe generalizedo the (closely related)space-time
boundaryintegral formulation. Furthermorefor situations
suchaselasticpropertyheterogeneityhatarenot congenial
to spectrabr boundaryintegral approachedinite difference
or finite elementproceduresould beused notin their con-
ventionalapplicationto directly calculatethe rupturepropa-
gationitself, but ratherto calculateandnumericallytakulate
thecorvolution kernelsfor usein our methodology

Thesecondngredientis variabletime stepping.Thesize
of thetime stepto be madeis dictatedby the currentvalues
of slip velocitiesandparametersf the constitutive law. The
smallertheslip velocities,the largerthe time step,andvice
versa. While the truncationof the corvolutions over prior
slip velocity history reduceshe amountof computatiornre-
quired to completeone time step, the variable time step-
ping reducesenormouslythe numberof time stepsneeded
to simulateprocesseduringthe essentiallyaseismigphases
of deformationwhich constitutealmostall of the fault his-
tory. Throughouthecomputationtime stepscanchangeby
mary ordersof magnituden value,allowing usto goin rel-
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atively few stepsthroughperiodsof essentiallyguasi-static
loading,to considemorecarefullythenucleatiorphaseand
to resole in greatdetail the featuresof the dynamicpropa-
gationduringaninstability. Thecoeficientsof proportional-
ity betweerthetime stepsandslip velocitiesdependon the
parameter®f the constitutive law aswell ason numerical
stability considerationshat we derive here. We presenthe
formulationfor a generalclassof rate-andstate-dependent
friction lawswith apositive directvelocity effect. Theproto-
type of suchlaws is the experimentallyderived logarithmic
law of Dieterich [1979,1981]andRuina [1983]. The pres-
enceand size of the positive direct velocity effect for the
guasi-staticrangeof slip velocities,amply documentedn
suchexperimentsare shavn to be crucial in allowing long
time stepsduring slow deformationphaseswithout losing
stability (during such phasesyvelocity-strengtheningarts
of the fault zone are continuouslyslipping, producingan
aseismioviscoplastidyperesponsé¢o which rate-andstate-
dependentriction thenreduces).

The main goal of the presentpaperis to give the de-
tailed descriptionof the methodin its current, much im-
proved form. Earlier versionsof the methodologywere
briefly outlinedand/orimplementedy Zheng et al. [1995],
Rice and Ben-Zion [1996], and Ben-Zion and Rice [1997].
We describethe algorithmingredientsn section2-6. The
new developmentsncludeunderstandingonstrainton the
time stepduringslow deformatiorphasesndcorresponding
limitations on the procedureapplicability (section4), much
more efficient truncationand evaluationof the convolution
integralsinvolved (section6), anda new procedureor up-
dating the systemin a time step(section5). Thesedevel-
opmentsallow consideratiorof a muchwider rangeof the
constitutive parametershetternumericalcorvergenceof the
results,andenhancedesolutionin time andspacewith the
samecomputationatesources.

Theproposednethodologycanbeusedio addresgnum-
ber of importantissues,suchas fault operationunderlow
overall stress,interactionof dynamicrupture propagation
with pore pressuredevelopment,patternsof rupture prop-
agationin eventsnucleatedaturallyasa partof asequence,
the earthquak nucleationprocessearthquak sequencesn
faults with heterogeneoufictional propertiesand/ornor-
mal stress,and others. Section7 demonstrateshe imple-
mentatiorof thealgorithmby consideringheelastodynamic
responseof a 2-D crustal strike-slip model, with depth-
variable properties,descendedrom the model of Tse and
Rice [1986] and studiedby Rice and Ben-Zion [1996] and
Ben-Zion and Rice [1997]. Consideringa wider range of
constitutive parametershanthe rangetractablefor previous
studieswe obsenethatsmalleventsappeafor lowervalues
of the state-golution distance The nucleationphase®f the

small andlarge eventsarevery similar, suggestinghatthe
sizeof aneventis determinedy the conditionson the fault
segmentgshatthe eventis propagatingnto ratherthanby the
nucleationprocesstself. We shav how insufficient resolu-
tion in time can producemore comple slip accumulation
thatlooks”smooth” andplausibleyetis justa numericalar-
tifact. We alsoevaluatetwo simplifiedapproachesynewith
theslow tectonicloadingbut nowave effects(quasi-dynamic
approachasin thework by Rice [1993]), andthe otherwith
all dynamiceffectsincludedbut much higherloading rate
(like in the work by Shaw and Rice [2000]). The compar
ison shaws thatincorporatingslow tectonicloadingis very
importantfor determiningthetrue modelresponse.

2. Elastodynamic Relation and Truncation of
Convolution Integrals

As an illustration of the elastodynamiagelations,let us
considera 2-D antiplaneframework, in whichthefaultplane
coincideswith the z-z planeof a Cartesiarcoordinatesys-
temzyz andall particlesmove parallelto the z direction.
Theonly nonzerodisplacemenis u,(y, 2, t), andwe define
slip 4(z, t) onthefault planeasthedisplacemendiscontinu-
ity 0(z,t) = u, (0%, 2,t) — u, (07, 2, t). Therelevantshear
stresonthefault planeis denoteddy 7(z,t) = 0,4 (0, 2, t).
It is possibleto expressthe stresson thefault planein terms
of theslip historyonthefault planeonly [e.g.,Cochard and
Madariaga, 1994,Perrin et al., 1995]as

@) =@+ fE -2 VD, O
where y is the shearmodulus,c is the shearwave speed,
V(z,t) = d(z,t) = 86(z,t)/0t is the slip rate, 7°(z, t) is
the”loading” stresq(i.e., thestresghatwould actif thefault
planey = 0 wereconstrainedhgainstary slip), and f(z, t),
incorporatingstresstransfersjs alinear functionalof prior
slip §(2',t") overthe causalitycone(i.e., all ' andt’ satis-
fying ¢(t — t') > |z — 2'|). Thelasttermof (1) represents
radiatve damping[Rice, 1993], andthe explicit extraction

of the dampingterm from the functional f(z, t) allows for
evaluationof f(z,t) without concerrfor singularities.

In (1), mostof the elastodynamicesponsés contained
in the stresstransfer functional f(z,t). Cochard and
Madariaga [1994] have expressedt asadoublecornvolution
integral in spaceandtime. Perrin et al. [1995] have derived
a spectralrepresentationf f(z,t) asa single corvolution
integral in time for eachFourier mode,whenrepresenting
slip andthe functionalas Fourier seriesin space.General-
izationsto generalslip and/oropeningstatesin 3-D prob-
lems are given by Geubelle and Rice [1995] and Cochard
and Rice [1997]. We usethe spectralrepresentatioof Per-
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rin et al. [1995]for theillustrationhereandwrite

Nele/2

Z D, (t) eikn z’

n=—Nele/2

0(z,t) =

)

Neie/2

flat)= Y

n=—Nele/2

Fn (t) eikn z ,

where ) is the length of the fault domainunderconsidera-
tion, replicatedperiodically Thereplicationdistance\ has
to bechoserseveraltimeslargerthanthedomainoverwhich
rapid faulting takes place,to assurethat thereis negligible
influenceof wavesarriving from the periodic replicatesof
the ruptureprocess.For adaptatiorto our numericalproce-
dure,Ngi (even)will be somelarge numberof FFT sample
pointsusedto discretizethis domain. Also, coeficients D,
and F,, arecomple in generalwith respectie conjugates
D_, andF_,, buttakerealvaluesfor n = 0 andNge/2, SO
thattherepresentationsivolve N, degreesof freedom.To
satisfy the elastodynamiavave equation,D,,(t) and F,(t)
arerelatedby

t !
0

where J; () is the Besselfunction of the first kind of order
one. Equationg1)-(3) arereferredto asthe "displacement”
representatioof the elastodynamicelations.An analogous
"velocity” representatioganbe obtainedby combining(1)
and(2) with theresultof integrating(3) by parts,giving

Fa) =~ 22l p, 1)

(4)

t
+%/ W (|kn| ct') Dyt — ')dt',
0

where Dy (t) = dDp(t)/dt andW (p) = [ [J1(€)/€]d¢
with W (0) = 1. As ary other boundaryintegral formu-
lation, the spectralrepresentatiorf2), (3) or (2), (4) gives
f(z,t) asafunctionalof é(z,t), becausef(z,t) canbe ex-
pressedn termsof the F, (t), F,(t) arerelatedto D,(t),
and D, (t) canbe expressedn termsof §(z,t) by thein-
verseFouriertransform.

We emphasizehat the spectralrepresentationin com-
parisonwith space-timeboundaryintegral formulations,is
very advantageoudrom the computationalpoint of view.
The matrix of corvolution integrals, implied by a space-
time formulationafter discretizationn spacejs replacedn
the spectralapproachby a diagonalmatrix, oncethe FFT

W(p)

02 i i i i
10 20 30 40 50

Figure 1. Corvolution kernelW (p) for the velocity formu-
lationin the2-D antiplanecase.

is usedto transformfrom é(z,t) to D, (t) andthenthein-

verseFFT from F,(t) to f(z,t). Eventhoughthe spectral
approachusesa larger numberof degreesof freedomthan
neededfor the domainof interestitself, the drasticreduc-
tion in the numberof time cornvolutionssignificantlyshort-
ensthe computatiorof the stresgransferfunctional f (z, t),

which is the mosttime-consumingtageof the analysis.We

shaw thisin AppendixB, wherewe further discussthe re-
lation betweenspectraland space-timdormulations. Note
that Cochard and Rice [1997] shaved how to reformulate
the spectraimethodto rigorouslyeliminatethe replications,
but thatrequirearmorecomplex calculationf theconvo-

lution kernelsandstill twice moredegreesof freedomthan
neededor the domainof interest.

If the corvolution integralsin (3) or (4) hadto be com-
putedin full, the algorithm would be impractical for in-
vestigationof long deformationalprocessesEvaluationof
the corvolution integrals is the most computationallyde-
mandingpart of the elastodynamianalysisand may take
more than 99% of the total computationaktime [Perrin et
al., 1995]. Fortunatelytruncationof thecorvolutionsis pos-
sible, which significantlyreduceghe overall computational
time. If the durationof the physicalproblemis muchlonger
thanthetime requiredfor elasticwavesto traversethespatial
domainof the systemit is not necessaryo keepexamining
the influenceof displacementsf pointson the failure sur
faceat all prior times. This is reflectedin rapid decayof
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thekernelsof the convolution integralsfor boththe velocity
anddisplacemenformulations.At largevaluesof p, theker-
nelsW (p) (shavn in Figurel) andJ; (p) /p have amplitude
decaylike 1/p%/2 for an oscillation (at circular frequeny
|kn| ¢) thataveragesn timeto zero.

Totruncatetheconvolutions,we definetheelastodynamic
time window asthetime interval [t — Ty, t], where,in the
computationallymostefficient versionof our methodology
T,, may bedifferentfor differentFouriermodes.T,, is cho-
sensuchthatthe contribution to the functional f of the de-
formationhistoryoccurringprior to time (¢ — T,) hasnegli-
gible effect on the simulationresults.Sinceonly the effects
from the currenttime ¢ backwardto (¢ — T,,) needbe in-
cludedin the dynamicresponsethe corvolution integrals
aretruncatedby computingthemonly within the elastody-
namictime window defined.Thistransformgq3) and(4) into

Tw !
and

Fa() =~ 2L, 1)

(6)

+

Tw .
“'f"'/ W (|knl ct') Du(t — t")dt,
0

respectiely. The discussiorof the truncationimplementa-
tion is givenin section6.

In view of the truncationprocedurethe velocity formu-
lation hasanimportantadvantageoverthedisplacementor-
mulation. As pointedout by Perrin et al. [1995], the first
(algebraickermin (4) and(6) corresponds$o thefinal static
elasticstress,and the remainingintegral term corresponds
to wave-mediatedstresgransfercarryingthe elastodynamic
effects. The isolation of the statictermis importantin our
computationaprocedurewherewe truncatethe remaining
convolution integral. During slow deformationalperiods
whereD,,(t) is small, the staticterm —p |k, | Dy (t) /2 con-
tributesmostto F,,(t). During all deformationphasesthe
velocity formulationwith truncation(1), (2), and(6), unlike
the displacemenformulation with truncation(1), (2), and
(5), ensureghatregardlessof the way the corvolution inte-
gralis truncatedthelong-termstaticstresdield (thatis, the
stressfield after passagef all waves)dueto slip up to the
time ¢ is alwaysexactly representedThus,the velocity for-
mulationshouldbeusedfor long deformationahistories al-
thoughthe displacementormulationcanalsobe useful,for
example, to study individual events. The sameseparation
into staticanddynamicparts,with truncationof the convo-
lution ontime within thedynamicpart,maybecarriedoutin

the framework of the space-timaepresentatioror f(z,t),
aswe briefly discussn AppendixB.

Notethatthecombinatiorof (1), (2), and(6) with 7, = 0
(no convolution)would amountto staticcalculationof stress
transfersthencorrespondingo the"quasi-dynamic’proce-
dure of Rice [1993], also discussedy Ben-Zion and Rice
[1995] and Rice and Ben-Zion [1996]. Becauseof the re-
tention of the radiationterm of inertial elastodynamicsas
1V/(2¢) in (1), the quasi-dynamigrocedureallows solu-
tionsto exist duringinstabilities;the solutionswould not ex-
istin aformulationwith nodampingterm,whichwe usually
call quasi-static.

3. Constitutive Laws and Space Discretization

Constitutive laws usedherearerate-andstate-dependent
friction laws developedto incorporateexperimentalobser
vations[Dieterich, 1979,1981; Ruina, 1983]. Theselaws
include dependencef strengthon slip velocity andon an
evolving statevariable(or variables)which characterizeas-
perity contacts,thusallowing for loss of strengthin rapid
slip andfor subsequentehealingso that repetitve failures
canoccut Thelaws have beensuccessfullyusedto explain
variousaspectof stableandunstablesliding betweerelas-
tic solids[Ruina, 1983; Rice and Ruina, 1983; Gu et al.,
1984; Tullis and Weeks, 1986] as obsened in the labora-
tory. Also, they have beenusedto model earthquak phe-
nomenajncluding nucleationductileandbrittle crustalslip
regions, spatio-temporaklip compleities, and earthquak
aftershockge.g., Tse and Rice, 1986; Suart, 1988; Okubo,
1989; Horowitz and Ruina, 1989; Rice, 1993; Dieterich,
1992,1994; Perrin et al., 1995; Ben-Zion and Rice, 1995,
1997; Rice and Ben-Zion, 1996; Suart and Tullis, 1995;
Tullis, 1996;Boatwright and Cocco, 1996].

A formulationof suchlaws which assumesonstannor-
mal stressand one statevariable,to recorddependencen
slip history; is of thegeneraform

T=19 (Vae) )
d6/dt = o (V,6),

(7a)
(7b)

where8 is the statevariableand r, V', and # dependon
spacevariablesand time. The rate- and state-dependent
constitutve laws as usually formulated, basedon labora-
tory obsenations,have the following properties.If slip ve-
locity V' is held constant.the statevariableand hencethe
stressvolve toward constanwalues calledsteady-stateal-
uesanddenoteddss = 04(V) and s = 755(V), respec-
tively, wherefy, satisfiesp(V,60ss) = 0 and g is givenby
Tss = W(V,0s). All laws of the class(7) reducefor § near
0ss(V), to df/dt ~ —(V/L)[0 — 6ss(V')], where L hasdi-
mensionsof slip and canbe interpretedas a characteristic
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slip distancerequiredfor evolution to the steadystate(L is
alsosometimeslenotedby d.. or D). Thestatevariabled is
usuallychoserin suchawaythatfss = L/V, particularlyif
0 is to beinterpretedasa characteristidifetime of theasper
ity populationon the contactsurfaces;L is theninterpreted
asa measureof the sliding distancerequiredto establisha
new populationof asperitycontacts,andis assumedo be
independensdf V. Thelaw (7) is saidto exhibit steady-state
velocity wealeningif dry/dV < 0 andsteady-stateeloc-
ity strengtheningf dry/dV > 0. If theslip velocity V' is
suddenlyincreasedr decreasedhestress simultaneously
increase®r decreaseghatis, instantaneoupositive viscos-
ity is incorporatedn (7) throughtherequirement

9p(V,0)
ov

This propertyis sometimescalled "direct velocity depen-
dence”or "direct effect” andis well establisheaxperimen-
tally. As discussedn section4, the presenceand size of
thisdirecteffectareessentiafor our numericalprocedureo
be efficientin simulatingprocessesf long duration.Hence
our methodis not immediatelyapplicableto otherconstitu-
tive laws, suchasslip-wealeninglaws (whichemepgeasthe
limit caseherefor rapidslip if ¢ andy/V are,in thelimit,
independensf V'), which do not have thatproperty

Stability of steadyfrictional sliding, governedby thecon-
stitutive laws of type (7) with thepropertiegddiscussedbove,
has beenextensively investigated Ruina, 1983; Rice and
Ruina, 1983; Dieterich, 1992; Gu et al., 1984; Ranjith and
Rice, 1999], particularlyfor singledegreeof freedomelas-
tic systems.Suchsystemsare genericallyrepresentedy a
spring-slidermodel,in which arigid block is attachedo a
springof stiffnessk andslideson a frictional surface,with
the otherendof the springmoving at theimposedrate V*.
Linear stability analysisof sucha system,perturbedabout
steady-statsliding at therate V*, asin the work by Ruina
[1983], shaws that the sliding is always stablefor friction
with steady-staterelocity strengtheningwhile for friction
with steady-statevelocity wealening,thereexistsa critical
valueof the springstiffnessk,, suchthatperturbationgrom
steady-stataliding grow in time for systemswith & < k..
anddecayin time for systemswith k¥ > k... For ratesV*
sufficiently small so thatthe inertia effectscanbe ignored,
thecritical stiffnessis givenby

> 0. 8)

hop = [_ Vdrss(V)/dV 7 (92)
L V=V~
wherethe precisedefinitionof L is
L=[-V/(0¢(V;0)/00)]y_y- pog.(v-y-  (9D)

Here and in the following, notation[ Iy, _y. s (v
meanghattheexpressiorin thebracletshasto beevaluated

at steadystategivenby V. = V*, 8 = 65(V*). Theorigin
of the well-known result(9a) is importantfor our consider
ation of variabletime steppingin section4. We review it in
AppendixA anduseit to restrictthe sizeof time steps.

Sucha stability dependencen the systenstiffnessin the
caseof steady-staterelocity wealening hasimportantim-
plicationsfor the properspacediscretization,imposingan
upperboundon a spatialelementsizein numericalmodel-
ing. To demonstratehis, let us continuewith the antiplane
example.Selecting/V,;, equallyspacedsamplepointsalong
thedomainof length\, we discretizethe domaininto space
elements(also called "cells”) [z;—1,2i], zi = ih, i =
1,2, ..., Nele, h = A/Neje. Thediscretizedormulationdeals
with slipsd; andshearstresses; atthesamplepoints,taken
atthe cell centers(z; — h/2). Eachof the cellshasthe ef-
fective stiffnessk (definedasreductionin 7; dueto elastic
interactionswith thesurroundinggor unit slip §; atthesame
samplepoint), givenby & = ~yu/h. Here~ is a model-
dependentonstantof orderunity. For example,y = 2/w
whenusingthecellularbasissetfor slip (i.e., calculatingthe
T; asif theslip werelocally uniformin eachcell) like in the
work by Rice [1993]andy = = /4 for the spectrabasisset
of (2). Thevaluesof v cited apply for cellswhosedistance
from ary free surfaceis mary timesh and, in the spectral
casefor Nge > 1.

If we startwith steadyquasi-staticsliding of the whole
domainat slip rate V* (taking this rate to be sufficiently
smallsothatthedynamiceffectsarenegligible) andslightly
perturbthe motionof onecell while maintainingsteadyslid-
ing of the othercells, we getthatthe linearizedresponseo
the perturbationis governedby the samesystemof equa-
tions as for the spring-slidermodel, with the spring stiff-
nessreplacedby the effective stiffnessof the cell. Hence
the perturbationwill grow if & = yu/h < ke Or, equiv-
alently h > ~yu/ke, andthe perturbationwill decayif
k = yu/h > ke or, equvalently h < ~ypu/ker . This
propertydefinesthe critical cell sizeh* = yu/ke. As em-
phasizedy Rice [1993], the growth of the perturbationon
onecell, while the otherscontinuethe steadysliding, would
imply thatthe cell is capableof failing independenthof the
surroundingcells, which would make the resultsdependent
on the numericaldiscretization. Hence,to insurethat the
perturbatioronasinglecell decayssothateachcell canfail
only asa part of larger spacesegment,the meshshouldbe
refinedenoughfor spaceelementsizeh to be muchsmaller
thanthecritical cell sizeh*. In otherwords,the condition

K /h=n>>1,
(10)

B YL
max[Vdr (V) /dV]

h* =yp/ker =
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shouldhold, wherethe maximumis soughtover all allow-
ableslip ratesV'.

The critical cell size h* is directly relatedto the nucle-
ation size of model earthquaks, that is, to the size of the
patchthat initiates unstable,dynamicslip. In simulations
with the constitutive laws of the type discussedhere,rapid,
dynamicbreak-outof an instability is always precededoy
guasi-staticslipping of a smallzone. The size of this zone
just beforethedynamicinstability is whatwe call the nucle-
ation size. ChangingL, and consequentlyz*, changeghe
nucleationsizein an essentiallylinearly proportionalman-
nerin all simulationswe have done. Thush* is notonly a
veryimportantnumericalparameteiit is alsoacrucialphys-
ical parameter

Notethatexpressiorn(10)is derivedneglectinginertial ef-
fects.Riceand Ruina[1983]have shovn (by consideringhe
spring-slidermodelwith mass)thatinclusionof theinertial
effectsincreaseg.; in (9a)andhencedecreases* in (10),
which requiresmakingcell size h evensmaller They have
also analyzeduniform slip (at constantslip velocity) be-
tweenelasticcontinua,with spatialperturbationof thetype
sin(2r2/\) andfound that (1) thereexists a critical wave-
length).; suchthatfor smallerwavelengthgheperturbation
is stableandfor largeronesit is unstableand(2) thevalueof
the critical wavelengthdecreaseappreciablywith increase
in theslippingvelocity. As confirmedby simulationsproper
resolutionof high slip velocitiesduring dynamicinstabili-
ties requiresthe statically estimatedcritical cell size h* to
be discretizedby tensand sometimege.g., in the caseof
strongvelocity wealkening)evenhundredof cellsh. Proper
discretizatioris furtherdiscussedn sectionst and7 andby
Zheng and Rice[1998].

Theneedfor suchfine discretizatiorstemsfrom therate-
andstate-dependefiiction lawsthatwe discussere.As al-
readymentionedtheselaws are supportedby experimental
evidenceat low V', andtheir featureof stateevolution over
aslip distanceL is supportedy the conceptof a character
istic slip requiredfor renaval of the asperitycontactpopu-
lation. The laws producehigh slip velocitiesnearthe rup-
ture tips andincorporatesmall characteristicslip distances
to beresohedthere,andhencerequirefine discretizationin
spaceandtime. The discretizationconstraintamay be pos-
sible to relax by usingmodifiedforms of the friction laws,
for example,in which L in thelaw for df/dt dependon V
andincreasesignificantlyfor the seismicrangeof V. Tak-
ing L proportionalto V' at high slip rateswould be equiva-
lentto having stateevolve over a characteristidime (rather
thanover a characteristislip distance)asfor the velocity-
wealeningrangeof the ad hoctype of friction law usedby
Shaw and Rice [2000]. Suchmodificationsandtheir influ-
enceon the qualitative featuresf the simulationresultsstill

have to be explored.

4. Variable Evolution Time Step

Simulatingtruly slow loadingwhile capturingdetailsof
occasionalrapid failures requiresvarying evolution time
steps.Our time stepselectioncriterionis basedon two ob-
senations. First, we recognizethat the slower the particle
velocitiesin aruptureprocessare,the longerthe time steps
shouldbecomeandvice versa.Second{o assureproperin-
tegration of the constitutve law during the calculation,we
would lik e the relative displacemenin eachtime stepto be
small comparedo the characteristilip evolution distance
L. To fulfill both of the above requirementsthe time step
from one updatingof field variables(slip velocity, stress,
etc.) to anotherwhich we call the evolutiontime stepAt..,
is choseras

Atev = mln[glLl/‘/Z]J (11)
where L;, V;, and ¢; are the characteristicslip distance,
the current slip velocity, and a prescribedparameterfor
theith cell of the discretizeddomain(introducedearlierby
[zi,l,zi], zi = th,1 = 1,2, ---;Nelea h = )\/Nele)y respec-
tively, and the minimum is soughtover all the cells. The
choiceof parameterg; depend®n the constitutve law and
stability considerationss explainedbelow. Criterion (11)
allows usto adjustthe evolution time steppingduringasim-
ulation basedon currentslip velocitiesof the cells, so that
slip in a time stepdoesnot exceeda fraction of the char
acteristicslip distanceof thefriction law, the fractionbeing
prescribedy &; for cell i. Theadaptve time stepAte, can
be enormouslylongerthanthe time for wavesto propagate
over the spacedomainduring periodsof slow, essentially
guasi-staticloading,beforeunstablaupturebegins,andcan
bevery smallduringspontaneoufilure,spanningupto 10
ordersof magnituddn valuein someof the simulationghat
we have done.

In betweenoccurrencesf dynamicruptures,whenslip
ratesarevery small, we would like evolution time stepping
to be aslarge as possiblewithout compromisingthe algo-
rithm accuray andstability. A ratherinsightful constraint
onthetime stepsatlow slip ratescanbederivedby consider
ing, asin our motivationfor existenceof thecritical cell size,
guasi-statistability of perturbednotionof asinglecell with
continuingsteadysliding of theothercellsatvelocity V*. If
thegrid is properlyrefined thenthe perturbatioron a single
cell diesaway, aswe have alreadyconsidered.Demanding
thatour time discretizatiorpreseresthis property we geta
conditionfor the size of the time stepallowed, which pro-
videsaconstrainfor &;,7 = 1,2, ..., Ng from (11). We de-
rive this constrainin AppendixA by analyzing,asa simple
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modelcase,explicit integrationof the governingequations
with a constantime stepAt. Fromthatwe obtain:

L A*

MR oA (422
if y > 0and
L B* — A*
At < o (1 - T) (12b)
if x <0, where
1 (kL B*—A*\?> kL
X‘Z(E‘T) T (12¢)
andA* and B* aregivenby
A* = [VOr(V,0)/0V]y=v+ o=6..(v+)>
(13)

A* = B* = [Vdrs (V) /dV]y—v-.

As the derivation in Appendix A shows, constraints
(12) areapplicableto both steady-stateelocity strengthen-
ing and steady-staterelocity wealening with a sufficiently
densegrid. For thelattercasewe have (B* — A*)/L = k¢,
andk/k.. = h*/h > 1, andhence(12) canberewrittenin a
moreinsightful form

L A
A J—
A NI Y oy (142)
it x > 0 and
L h
At< = (1o 14b
t< i (1- 1) (14b)
it x < 0, with
1B* — A* [h* 2 op
XﬁT(W‘I) Th (14c)

Conditions(12) or (14) give anestimateof therequiredtime
steppingfor low slip velocities;if theseconditionsare not
met, cell-by-cell instabilities arise which either make the
simulationsmpossibleor corrupttheresults.

Deriving theserestrictionsis an importantdevelopment
in the methodologyasthey explainedandeliminatedmary
of the numericaldifficulties that we had. Note that when
thecondition(12a)or (14a)is applicable(whichis oftenthe
casesincelargeh* /h is requiredfor properspacediscretiza-
tion), it impliesthatif we refinethegrid (takingsmallercell
sizeh andhencelarger h*/h in (14a)or largerk in (12a)),
then we have to decreasehe time steppingas well, even

in purely quasi-statigphase®f the analysis. The condition
alsorevealsthatif thedirecteffect A* is decreasedhenthe
time stepsshouldbe chosersmalleraswell. Thatis why the
efficiency of ouralgorithm,whichrelieson usinglong adap-
tive time stepsduring quasi-statidoading periods,depends
onthesizeof thepositive directeffect (quantifiedby A*) for
thequasi-staticangeof slippingvelocities.Notethat(12) or
(14)arenotapplicableo thecased* = 0, astheirderivation
(AppendixA) assumesionzeroA*. Moreover, for a certain
rangeof (very small) valuesof A*, the inertial effects be-
comecomparabldo the direct effect even for smallsliding
velocitiesandcannolongerbeignored.TheRice and Ruina
[1983]inertial analysisndicateshatlinearizedperturbation
to steady-statsliding of all wavelengthsareunstablen the
caseof A* = 0. In practiceijt is possibleto simulateasingle
dynamiceventin the casewith A* = 0, apparentlywithout
numericalinstability (A. Cochard,private communication,
1999), possiblydueto the low ratesof growth of the insta-
bility for thehighestmodes.However, thetime steppinghas
to be so small thatlong deformationhistoriesare excluded
from considerationSinceouralgorithmreliesonusinglong
adaptvetime stepsduringquasi-statidoadingperiodsjt can
be efficiently usedonly for the constitutie laws thatexhibit
the experimentallyverifiedpositive directeffectasin (8).

On the basisof conditions(12), we chooseparameters
&t =1,2, ..., Nee (usedin selectionof the evolutiontime
stepy(11))as

, Az 1
e =
if x; > 0and
Br —Ar 1
;=min{1— =% = 15b
13 mln{ WL 2} (15b)
if x; <0, where
1 (kL; Brf —AN\> kL,
weg (- 7). e

andsubscripti denoteghevalueof the correspondingjuan-
tities for the cell i and & is the single-cellstiffness,yu/h.
The term 1/2 enters(15) to enforcethe condition that for
eachcell theslip in every time stepis notlargerthanhalf of
thecharacteristislip distanceL;.

The time stepselectioncriterion (11) and (15) captures
theessencef our variabletime-steppingschemebut in ac-
tual simulationswe modify the criterion slightly to recon-
cile the variability in time stepswith the necessityto com-
puteconvolutionintegrals,uniformly discretizedn time. To
storedeformationhistoriesin anefficientway, weintroduce
atime parameterAt,;,, whichis theminimumvalueof the
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evolution time stepallowed (and alsothe discretizationin-
tenal for computingthe corvolution integrals,asexplained
in sectionB). It is selectedasa fraction of thetime Atcep
neededor elasticwavesto traversea spatialelementjn the
form

Atmin = ﬂminAtcell = /Bminh/c- (16)
We insistthateverytime stepwe take beanintegermultiple
of Atmin andnotsmallerthanAt,;,. Thatis, we first com-
putethe (tentative) time stepAte, usingcriterion (11) and
(15) andthencorwvertit into amultiple of A¢yin:

Ney = int [Atev/Atmin] ’
17)
Aty = max { Atmin, NeyAtmin} -

The parameteAt,,;, determinesiow fine our resolution
in time is. To understanchow to chooseAty;, (Of Bmin
from (16)), let usconsidethow the evolutiontime stepAt,,
during dynamicinstability relatesto Atcen = h/c. We rec-
ognizefrom (1) that a characteristicslip velocity of order
c¢A7/u is inducedby an abruptdynamicstressdrop Ar.
Hence,to resohe the characteristicslip distanceL of the
friction law, Ate, hasto be of theorder Ly /(cA7). At the
sametime, usingour constraint§10) on the grid spacingh,
we canexpressAteen = h/c = h*/(nc) = yuL/(neAry),
whereAr, = —max[Vdr(V)/dV]. Fromthe above for-
mulae,Atey /Atcen is comparableo nArg /yAr. Thecon-
stanty is of orderunity, n = h*/h hasto betensor hundreds
in orderto properlydiscretizethecritical cell sizeh*, andthe
ratio A, /A1 canbe considerablysmallerthanunity. This
suggestshatthe smallestrequiredtime stepAt,, is compa-
rableto Atgq.

We have found that if other parametersmost notably
n = h*/h, are chosenappropriately the standard’sam-
pling” choicefmin Of 1/2, giVing Atmin = Atcen/2, pro-
ducesstableand satishctory resultsfor the caseswe con-
sidered;Bmin = 1/4 canalsobe successfullyusedin most
casesNotethat(16) canberewrittenas
Atmin = /ﬁminh/c = ﬁminh*/(nc)- (18)
If a betterresolutionin time is desired,it is often advanta-
geousfor betterstability and fastercorvergenceof the re-
sults,to keepfmin = 1/2 or 1/4 andto increase; = h*/h
(andhenceN,), ratherthanto keepn andto decreas@yin,
eventhoughincreasing; is morecostlyin termsof computa-
tional time andmemory If therearenumericaloscillations
or other featuresin the simulationthat point to an inade-
guateresolution,possiblyin time, decreasingBmi» without
increasing) doesnot always solve the numericalproblems

to the desireddegree,whereassuflicientincreasean 7 does,
providedotherparameterssuchaselastodynamitime win-
dows, replicationperiod,etc.,arechoserappropriately

5. Updating Scheme: Advancing One
Evolution Time Step

Let us considerhow the valuesof field variablesare up-
datedover oneevolution time step.We will usethevelocity
formulationwithouttruncationin this section for generality
andconsidertruncationof the corvolution integralsin sec-
tion 6. We continuethe antiplanecasewith the domain\
discretizedinto cells [z;_1, 2i], z; = th, i = 1,2, ..., Ngle,
h = A/Nqe. Supposethat the discretizedvaluesof slip
0;(t), slip velocity V;(t), statevariable8;(t), stressr;(t),
andstaterated; (t) at cell centersareknown attime ¢ for all
i = 1,2, ..., Ng andthattheslip velocity historyis known
for all prior time ', 0 < ¢’ < t, wheret = 0 is the begin-
ning of thedeformatiorprocessonsideredWhenusingthe
spectraformulation,we alsoassumehatthe Fouriercoefi-
cientsD,,(t) of theslip distribution areknown attime ¢ and
note that the velocity history needonly be availablein the
Fourierdomain,asthe valuesof D,,(¢') for 0 < t' < t. To
adwancethe field valuesby one evolution time stepandto
determineall the quantitiegust mentionedatthe endof that
step,we proceedn the spirit of a second-ordeRunge-Kutta
procedureasfollows:

1. Determinethe evolution time stepAt = Af,, to be
madeusingcriterion(11) and(15) - (17).

2. Make first predictionsof the valuesof slip and state
variableattime ¢ + At, basecdon known valuesatt, as

SE(t + At) = 8;(t) + AtVi(t),
(19)
0r(t + At) = 6;(t) + Atb;(t).

3. Make a correspondindirst prediction f (t + At) of
the functional, using slip prediction (19) and treating the
slip ratesasif they were constanthroughthetime stepAt
andequalto V;(t). To implementthis in the spectralfor-
mulation, we first computethe Fourier coeficientsof V;(t)
ando; (t + At). To representFT operationsyve shift the
coordinateorigin so that the cell centersareat z; = jh,
j = 1,2,..., Nele, anddefineR,,; = e~ 27"i/Nee /N, and
R;, = emini/Nae wherei = /=T (unlessusedassub-
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script),to get

Nele

(20a)
D (t + At) = D, (t) + AtD,(t).

Then, using (4), we getthe Fourier coeficientsof the pre-
diction of the functional

EX(t+ At) =— @ [D;;(t + At) (20b)

t+At .
- / W (|kn|ct")Dp(t + At —t")dt'
At

At
— D,(t) w (|kn|ct')dt'] .
0

Within the bracletsof (20b), the secondterm canbe com-
putedsincetheslip velocity historyis known. Thethird term
is an approximationof the corvolution on the time interval
correspondingdo the currenttime step. We thenobtainthe
predictionof the functionalthroughaninverseFFT as

Neie /2
> R'Fi(t+At).

n=—Ncic/2

fit+ A = (20c)

4. Find predictedslip ratesV;*(¢t + At) corresponding
to the predictedstated; (t + At) from (19) andfunctional
f#(t + At) from the last stage. This is doneby equating
stresq1) to thestrength(7a)to get

TO(t+ At) + fE(t+ At) — Qﬂcv;.* (t+ At)
(21)
= (V" (t + At), 07 (t + At))

andthensolving (21) for V;*(t + At). Wefind V;*(t + At)
usingNewton-Rhapsorsearchwith V;*(¢) asthefirst guess.
Once V;*(t + At) are obtained, the correspondingstate
rates can be readily found from (7b) as 6X(t + At) =
o (Vi (t + A1), 07 (t + At)).

5. Calculatethefinal predictionof slip andstatevariable
attimet + At by

At

07" (t + At) = 6;(t) + 7[‘/}(1&) + V5 (t + At)],
(22)
At .
07 (t+ At) = 0:(t) + < [0:() + 07 (¢ + Ad)).

(Thesuperscriptioubleasteriskscould be dispensedvith at
this point, but is usefulfor comparisorto othermethods.)

6. Make a correspondingprediction f}*(t + At) of
the functional, usingthe 6;* (¢ + At) andtreatingthe slip
ratesasif they were constantthroughoutthe time stepat
(Vi(t) + V*(t + At))/2, consistentlywith updatingslip in
stageb. The specificstepsareanalogougo (20) in stage3.
Notethatthesecondermin thebracletsof (20b)will bethe
samein this stage,andhenceit canbe computedust once,
in stage3, andstoredfor usehere. This is computationally
very advantageoussincethis termincorporatesnostof the
convolution evaluation.

7. Makefinal predictionsV;** (¢ + At) andf* (t + At) of
the slip rateandstaterate,similar to stage4, usingthe nen
predictionsd;*(t + At) for the statevariablefrom (22) and
theresult f*(¢t + At) of the last stagefor the functional.
Thatis, solve the equationlike (21), but with superscripts
double asterisks;to find V;**(t + At), and then compute
0*(t + At) from (7b).

8. Declarethevaluesof field quantitiesd; (t + At), 6;(t +
At), Vi(t+At), 6;(t+ At) to beequalto thepredictionswith
thesuperscriptioubleasterisksComputethecorresponding
valuesof stressr;(t + At), if neededfrom (7a). Storeslip
velocity historyfor thetime interval [¢, ¢ + At], to beusedin
future corvolutionevaluationsasV;(t') = [Vi(t) + V;* (¢t +
At)]/2for ' in [t, t + At]. In thespectraformulation,store
insteadthe history of the Fourier coeficientsas D, (¢') =
(D, (t) + Dx(t + At))/2 for ' in [t,t + At], sincethey
areactuallyusedin the corvolutions,andsetD,, (t + At) =
D*(t + At). Finally, returnto stagel to advancethrough
thenext time step.

This schemes second-ordeaccuraten At for the slip
andstatevariable, assuminghatthe predictionsof thefunc-
tional are computedaccuratelyenough(N. Lapusta,Ph.D.
thesisin preparation2000). We usethe midpoint integra-
tion schemeo computethe convolution integrals. Notethat
while it is importantto know the orderof accurag of anup-
datingschemetheactualperformancealsodepend®nother
things,suchasstability characteristicdyalanceof termsthat
achievesmosterror cancellation etc. Ultimately, the most
importantthing is the ability of a schemeto producenu-
merically stablesimulationswith resultscorvergentthrough
spacegrid reductionand bettertime resolution,which can
oftenbechecledonly by actuallydoingthe simulation.

Earlier studiesuseddifferentupdatingschemeshat pro-
vided a foundationfor the developmentof the schemede-
scribedhere.Theschemaisedby Rice and Ben-Zion [1996]
and Ben-Zion and Rice [1997] proceedshrough stagesl
to 4 and declaresthe valuesof the field variablesat time
t+ At) to beequalto thepredictionsd} (t + At), 67 (¢t + At),
Vi*(t + At), and@? (t + At), all of which arefirst-orderac-



LAPUSTA ETAL.: DYNAMIC ANALYSISOF SLOWLY LOADED FAULTS 11

curate(N. Lapusta,Ph.D.thesisin preparation2000). The
only departurein this "incomplete” schemeis in stage2,
wherethe value of the statewas computedusingnot (19),
but throughexactintegrationof (7b) assuminghatthe slip
velocity wasconstantin time throughoutthe step. Another
updatingschemavasoriginally developedby Morrissey and
Geubelle [1997]for the caseof constankvolutiontime steps
and constitutive laws without statevariablesand described
by themasa”semi-implicit velocity formulation”, "with de-
lay”, "discretizedkernel”, and "convolutions by trapezoid
rule”. It incorporatesstepssimilar to stagesl-5, andthen
usespredictionsé;*(t + At), 07*(t + At), V*(t + At),
and@; (¢t + At) asthe valuesof the field variablesat time
(t+ At). It alsoapproachedifferentlythecorvolutioneval-
uation,usingatrapezoidatule anddelayin kernel. The de-
lay in kernel,discussedn detailby Morrissey and Geubelle
[1997], wasintroducedasanempiricalstepby Cochard and
Madariaga [1994] to smoothnumericaloscillationsin slip
velocity right behindthe rupturefront, but at the costof re-
ducingthe slip velocitiesat the tips of the propagatingdis-
turbances.

The presentschemeperforms better than both of the
above mentionedscheme thecaseshatwe consideredlt
doesnot usethe delay capturesmoreaccuratelythe (high)
slip velocitiesattherupturetips,andhasessentiallfhesame
stability performanceHowever, it is morecostlyin termsof
the computationatime (but not memory which is oftenthe
primary limitation), mostly becausét usesanotherpair of
FFT transformsat the stage6. Eachof the FFT transforms
requiresO ( Neie log, (Nele)) floating point operations.The
othertime-consumingomputatioris the evaluationof con-
volutionintegrals,which,asconsideredh section6, requires
from O (Neie log, (Nele)) to O(N3,) operationsdepending
on the truncationprocedureused. Clearly if the trunca-
tion schemaisedrequiresD (N3, ) operationsthentheextra
FFTsdo not make muchdifferencein termsof thecputime.
However, if the more efficient truncationprocedurecanbe
usedin the problemat hand,thenthe numberof operations
for the FFTsandfor the convolutionscanhave comparable
ordersof magnitudejn which casethe advantageof the full
schemel-8 hasto be weightedagainstthe increasein the
computationatime.

6. Evaluation of the Truncated Convolution
Integrals

Let us considerthe evaluationof the truncatedconvolu-
tion integralsin the velocity formulation (1), (2), and (6).
Theelastodynamigvindow T, (introducedn section2) can
be selectedthe samefor all Fourier modes,or it can be
mode-dependentWe have studiedboth approaches.Let

Tw(n) = T,(|n|) denotethe length of the elastodynamic
time window for moden. Keepingthe window the same
for all Fourier modessimplifiesthe procedureput it is not
a very efficient choice, for the following reason. The ar-
gumentof the corvolution kernel, |k,|cd = 2mc|n|8/A,
dependson the mode numbern and variesin the ranges
[0, 27cTy, (1) / A] for thelowest(spatiallynonuniform)mode
|n| = 1 and[0, 7 Nete¢Tw (Nete/2)/A] for the highestmode
|n| = Nele/2. We call thelengthof theserangeskernelwin-
dows K,,(n), sothat

Ky(n) = |n| 2re/N)Ty(n). (23)
If T, (n) isthesamefor all n, then K, for thehighestmode
is (Nele/2) timeslongerthanfor the lowestmode. Since
thecorvolution kerneldecayqFigurel) and Ny is usually
a large number(spanningvaluesfrom 512 to 65536in the
simulationswve have done),muchof the computatiorfor the
highestmodeshasnegligible contribution.

To save computationatime and memory we examined
useof timewindows T, whicharemode-dependermndsig-
nificantly shorterfor the highermodes. In the currentim-
plementationfwo parametersieterminethe window sizes.
Oneof themis T, (1), thetime window for thelowestmode
|n| = 1, andthe otheris g, the ratio of the K,, for the
highestand the lowestmodes. Oncetheseparametersare
selectedthe K, for all the modesaredeterminechs

Ky(1) = 2ne/NTw(1), Ky(Nee/2) = quwKw(1),

(24)

Ky(Nete/2) — Ky (1)
Nlele (=)

— (2re/NTw(1) (1 + 1\55/7;—11(|”| - 1)) .

Ky(n) = Ky(1) +

Thatis, thekernelwindow K, (Neie/2) for thehighestmode
is g, timeslongerthanthe window K,,(1) for the lowest
mode, and the kernel windows for the modesin between
vary linearly with |n|. Thecorrespondindime windows T,
canbefoundfrom (23). Notethatfor g,, = Neje/2, this ap-
proachis equivalentto theonewith theconstanf’,,. Thead-
vantagearisesfrom thefactthatfar smallerg,, canbe used;
acceptablealuescanbe aslow as4 for someproblemsin-
cludingourimplementatiorexamplesin section?.

We determinethe parameterd’, (1) andg, by trial and
error, startingwith an educatedguessand then comparing
theresultswith theonesfor smallerandlargervaluesof both
parametersyntil cornvergenceis reached A usefulparame-
terfor makingtheinitial 7, (1) guesss thetime T for elas-
tic wavesto propagatehroughthe domainof size A treated
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in the spectralformulation. In general,T,,(1) = T, is a
goodinitial guessWe selectT’, (1) in theform

T’w(]-) = an)\ = nw)\/cy

where from ourexperiencey,, of 1to 4 aresufiicientvalues
for mostproblems.

In orderto use standardproceduresor computingthe
convolution integrals, we discretizeT,, (n) usingthe (con-
stant)time intenval Atmin introducedin (16). Computing
the field valuesusing evolution time stepsAt,, from (17),
which are multiples of At,,;,, we store the field values
neededfor cornvolution evaluationon a uniform time grid
of spacingAt.i,, repeatingeachvalue A, [ Atmin times.
The lengthsof elastodynamidime windows T,(n) deter
mine how mary valueshave to be storedfrom the current
value backin time for eachFourier mode. This array of
the storeddeformationhistory containsthe valuesneeded
for the discretizedcorvolution in the usefulformat (spaced
by Atmin), Which simplifiesandspeedsip the computation.
At eachevolutiontime step thearrayof storedhistoryis up-
datedby writing newly computedvaluesoverthevaluesthat
have movedoutsidetheelastodynamitimewindows T, (n).
Henceonly afractionof thearrayis typically updatecateach
time step,andthe assignmentor eachvaluein the arrayis
doneonly once. In earlierimplementationgZheng et al.,
1995; Rice and Ben-Zion, 1996; Ben-Zion and Rice, 1997],
thefield valueswerestoredat (variable)evolutiontime steps,
andthentime-consumingearchandmappingroutineswere
employedin every time stepto transfervaluesfrom the set
of the evolution time stepsto the uniformly spacedarrayre-
quiredfor the calculationof the corvolution integrals. Ob-
tainingthis arraywasthe mostexpensve partof thecompu-
tation, beingup to 10 timesmoretime-consuminghanthe
multiplicationsneededto evaluatecorvolutions. The cur
rent procedurereduceghe cputime for updatingthe array
of the storedhistory by ordersof magnitudesothatthe cpu
time for computingcornvolutionintegralsis essentiallydeter
minedby thecputime requiredto performmultiplications.

Let us estimatethe orderof magnitudeof this latter cpu
time. Whenthe time windows T, are the samefor each
Fouriermode they aretakento beof theorderof thetime T
for elasticwavesto propagatehroughthedomainof interest.
In this case,the corvolution evaluation,at eachtime step,
requiresO(Nee) floating point operationsfor eachFourier
modeandO(NZ,) operationsaltogether(for all modes).In
the caseof T,, dependenbn the Fourier modesaccording
to (23)-(24), an upperboundon the numberof operations
for the moden scalesas O(qy Nele/|n|), and the number
of operationdor all modesis at mostO(quele ln(Nele)).
Sincethe typical valuesfor N are thousanddo tens of
thousandsandg,, canbe assmallas4, thereductionin the

(25)

overall cputime dueto the mode-dependerk, is very sig-
nificant. Theanalogouseductionarisesn memoryrequire-
ments,asmuchlessdeformationhistory hasto be storedfor
highermodes.

7. Implementation Example

7.1. Formulation of 2-D Modédl and its Response

To demonstratéhow the ideasoutlined in the previous
sectionsaarecombinedo producdong-duratiorsimulations,
let us considerelastodynamicresponseof a 2-D depth-
variablefault model(Figure 2), to which earlierimplemen-
tationsof relatedprocedurediave alreadybeenapplied[Rice
and Ben-Zion, 1996; Ben-Zion and Rice, 1997]. In this
model [Rice, 1993], a vertical strike-slip fault with depth-
variablepropertiess embeddedh anelastichalf-spaceThe
faultis drivenbelow depthZgepen = 24 km with aplaterate
of Vo1 = 35 mmlyr. In the shallaver zone,governedby a
constitutive law, theslip 4(z, ) is calculatedasa functionof
depthz andtime t (variationswith along-strile distancex
arenotincludedin this 2-D model).

This model can be mathematicallydescribedas the an-
tiplane problemdiscussedn previous sections. It proves
corvenientto expressthe formulae in terms of variables
(0(2,t) — Viut) and (V' — V), in which caser®(z, t), the
stresswhich would actif the planey = 0 wereconstrained
againstary slip, becomesndependenbf time andequalto
the initial stressr°(z). Hence,following relations(1) and

y

Slip constrained to vary

s stinsbrto sl -

.

|| -96km<z<-24km:
Moving substrate;
slip imposed at
uniform rate of 35 mm/year

|——
o

24 km

A SN

-,

24km<z<O0:

Fault zone with
depth-variable properties;
rate- and state-dependent

friction law applies

N

Figure 2. A verticalstrike-slipfaultin anelastichalf-space
(likein thework by Rice [1993]).
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(2), we write

r(z1) = 7°() + £ (2, 0) = - (V(2,0) = Vi)
Nele/2

Y. Da()e=A,

n=—Nele/2

(26)
0(2,t) — Vit =

(27)

Neie/2

>

n=—Neie/2

flz,t) = Fo(t)e*=#/A,

with therelationbetweenD,, (t) and F, (t) givenby (6). We
usep = 30 GPaandc = 3 km/s.

We selectthe replicationdistance\ in the z directionin
the following way. In additionto the region [— Zgeptn, 0]
wherewe wish to simulateslip, we includein A the sub-
strate(mantle) region [—4 Zgepth, — Zdeptn], Wherea plate
velocity of V' = V;; = 35 mml/yris imposed. That means
0(z,t) — Vat = 0 there,so FFT samplepointsin that part
of the domaincreatezero padding. Finally, to modelthe
free surfaceat z = 0, we map the slip and slip velocity
from the region [—4Zgeptn, 0] to the region [0,4Zgeptn] as
even functions. Hence,the spatialdomainto consideris
[—4Zdepth; 4 Zdeptn] N the z direction,and A = 8Zgeptn
or 192km for Zgepsh = 24 km. As notedbefore,because
of the Fourierseriesrepresentatiof27), we actuallysolve a
problemwherethis domainis periodicallyrepeateclongz,
but thezonesof potentialrapidslip accumulationywhich co-
incide with the steady-staterelocity-wealeningregions of
a — b < 0, areseparatecnough(by at least6Zqeptn) t0
preventsignificantinfluenceof spatialreplicationson each
other

For ourexampleshere wetaketheconstitutvelaw in one
of the standardaboratory-denedforms of rate-andstate-
dependenfriction (7) with the Dieterich-Ruinaversion of
statevariableevolution

o V(z,t) V,0(z,t)
7(z,t) = 3(2) | fo + a(z)In T +b(2)In It |’
(28a)
00(z,t) V(z,t)0(z,1)
5 1 Ik (28b)
except that we regularize the first of thesenearV = 0

asdiscussedelon and,to allow V' of eithersign, replace
V(z,t) with |V (z,t)| in (28b). In (28),  is the effective
normalstress.f, = 0.6 is thevalueof friction coeficientat
thereferencevelocity V, = 1um/s,a andb arefrictional pa-
rametersandL, asbefore,is thecharacteristislip distance.
As (28) indicates,a, a, b, and L vary with depthbut not
with time. Examplesof dynamicmodelingwith additionof

powerlaw creepatdepthandotherfeaturesaregivenby Rice
and Ben-Zion [1996] andBen-Zion and Rice[1997]. Theas-
sumedvariationof a andb with depth,like in the work by
Rice [1993], is shawvn in Figure 3a. This is consistentwith

the experimentallydeterminedtemperaturedependencef

(a — b) by Blanpied et al. [1991, 1995]for graniteunder
hydrothermalconditions,as mappedby theminto a depth
variationbasedon a SanAndreasfault geotherm.Variation
of L with depthis discussedelon. The effective normal
stressg is assumedn this exampleto vary with depthin a
waythatincorporatesigh fluid overpressurizatiomatdepth,
accordingo & = min[2.84(18z/km), 50] MPa. In this dis-
tribution (showvn in Figure3b), & is equalto overburdenmi-

nushydrostaticpore pressureat shallov depth(up to about
2.6 km), with transitionto lithostaticpore pressuregradient
with 50 MPa offsetat depth.Figure3b alsoshavs theinitial

stresswhichis thesamefor all the casesonsideredhere.

Since the friction law (28) is a particular (and widely
used)versionof (7), all our conclusionsfrom sections3
and 4 hold with A* = ag, B* = bo. The critical stiff-
ness(9a) becomesk., = (b — a)/L. To find the critical
cell sizeh* correspondingo (10), we needto determinethe
coeficient~ for our presenmodelin the expressiorfor the
single-cellstiffnessk = yu/h. As mentionedn section3,
v = w/4 ~ 0.79. Thatv wasdeterminedby performing
the staticelasticspectrabnalysisof unit slip ata singleFFT
samplepoint (and all its replications)and equatingthe re-
sulting stressreductionthereto yu/h. Whenwe ignorethe
presencef a free surface the calculationis straightforvard
andgivesy = /4 + 2/Nee (Where2/Nge, Which arises
from the periodic replication,can be ignoredfor the large
valuesof N, we consider). A full calculation,which we
did numerically alsoincludesunit slip in themirror cell and
in all its periodicreplicates.lt resultedin valuesof v very
closeto /4 for all thecellsexceptfor theoneadjacento the
freesurface,wherey = 0.47. Using~y = w/4, we estimate
thecritical cell sizeby

(29)

A drawback of the logarithmic form (28a) is that the
stressis not definedfor V' = 0. The logarithmic form
wasderived from purely empiricalconsiderationgo match
experimentalobsenations[Dieterich, 1979, 1981; Ruina,
1983]. However, it hasa theoreticalbasis,in that sucha
form would resultif thedirectvelocity effectis dueto stress
biasing of the activation enegy in an Arrheniusrate pro-
cessat contactjunctions,at leastin the rangefor which for-
ward microscopicjumps, in the direction of shearstress,
are overwhelmingly more frequentthan backward jumps.
Suchinterpretationseemsimplicit in the work by Chester
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Figure 3. (a) Depth-ariabledistribution of frictional parameterga — b) anda (like in thework by Rice [1993]), consistent
with the measuredemperatureand inferred depthvariation of (a — b) of Blanpied et al. [1991, 1995]for graniteunder
hydrothermakonditions. (b) Depth-ariabledistribution of the effective normalstressz (solid line) andinitial shearstress

7°(z) (dashedine).

and Higgs [1992] and Chester [1994] andis more explic-
itly proposedy Brechet and Estrin [1994] andBaumberger

[1997]. To accountin a simpleway for backward jumps,

which could not be neglectednearV = 0, we solve (28a)

for V, identifyingthefactorexp(r/aa), whichthenappears
as the stresshiasing of forward jumps, and replaceit by
[exp(T/ad) — exp(—7/ad)] to accountor backwardjumps
too. This procedurepsedby Rice and Ben-Zion [1996] and
Ben-Zion and Rice [1997], replaceq28a)with the regular

izedform

7(2,t) = ad(z,t)

(30)

X arcsinh v ex
av, &P

During forward sliding at ratesof order V,, the modifica-
tion to exp(7/aa) is of orderexp(—2f,/a) or less,where
fo/a = 40, andsothisis anegligible changefrom (28a).

As discussedefore, the critical cell size h* from (29)
is a very importantparameterboth for the physicsandnu-
mericsof the problem.In principle, h* canvary with depth,
sinceit is determinedby the depth-ariablefrictional prop-
ertiesandstressin all our exampleshowever, we attemptto
male h* uniform throughoutthe velocity-wealeningdepth
range. The motivationis that we have a uniform computa-

tional grid andwish to keeph*/h uniformly high for good
numericalresolution. As is well known, it is not presently
feasibleto do computationsvith valuesof A* choserin con-
sisteny with laboratoryvaluesof L (which aretypically in
thefew micronrangeandgive h* in therangeof 1 m). We
thustake larger L and h* but do keeph* small compared
to otherfeaturesizesin the model,suchasthe seismogenic
depth,which in our model correspondgo the steady-state
velocity wealening region, extendingover ~ 12 km. We
prescribeh* in the simulations usingvaluesapproximately
equalto 0.94km and0.94/4 = 0.235 km in the examples
shown.
The distribution of the characteristicslip distancelL is
assignedrom (29) basedon the desiredh* for cells with
steady-statgelocity weakening. For theabove valuesof h*,
this resultsin L of orderof millimetersto tensof millime-
ters, much larger than laboratoryvaluesbut, as explained,
neededo keepthesizeof h* possibleo resole. Suchselec-
tion of L hasto beadjustedn theregionscloseto transition
from the velocity-wealeningto the velocity-strengthening
friction, where,owing to nearzerovaluesof (b — a), it re-
sultsin very smallvaluesof L. Resolutionof thesevalues
would require extreme refinementof time steppingduring
dynamicrupture,whenslip velocitiesare large, asfollows
from the time selectioncriterion (11). Thuswe increaseL
in thoseregions,effectively changingincreasingthenucle-
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Figure 4. (a) Depth-\ariabledistribution of the characteristislip distancel. of thefriction law, for thetwo casesonsidered.
(b) Madificationin the critical cell size h* causedby the adjustmentgincreasesjo L in the regionsnext to the transition
from the velocity-wealeningto the velocity-strengtheningyiction; A* is definedonly for the velocity-wealeningpartof the

faultzone.

ation sizethere. As for the velocity-strengtheningegions,
keepinga particularvalue of »* is not of a concern,since
nucleationcannothappenthere. However, it is the reso-
lution of L in the velocity-strengtheningegions that usu-
ally controlsthe sizeof time stepsduring essentiallyquasi-
static phasesf deformation. This is not surprisingsince
during the quasi-staticphasesthe velocity-wealening re-
gionsarestuckwith nearzerovelocities,while thevelocity-
strengtheningegions are creepingwith (much larger) slip
velocitiescloseto the platevelocity. Hence,while assign-
ing L in thevelocity-strengtheningegions, it is practicalto
take into consideratiortime stepconstraintg12). Keeping
in mind the restrictionsdiscussedand aiming for a simple
and continuousdistribution of L, we use,for the examples
in this paper the distribution of L(z) shawvn in Figure4a.
Suchanassignmentf L keepsh* constantandunmodified
from 13.5t0 4 km depth.Figure4b demonstratethe modi-
ficationof h* causeddyy theadjustmentsn L.

Beforewe considerchoicesof numericalparameterdet
us have alook at the responsehis model producesandour
simulationsareableto capture.Figures5 and6 show parts
of the slip accumulationy for thecases* = 0.94 and0.235
km, respectrely. Figure7 shovsthe maximumslip velocity
historiesfor thesetwo casesFromthe data,aswell asfrom
theassortedlip velocity output,we noticethatthevelocity-
strengtheningregion at the bottom of the fault is creep-

ing, with roughly the plate velocity of 35 mm/yr, whereas
the velocity-wealeningregion accumulateslip throughdy-
namicfailureevents.Thevelocity-strengtheningegion near
the free surfaceis thin and getsbroken by strongruptures
comingfrom the bottomof the fault segment,but it alsoex-
hibits somecreeping.Evenontheseplots, nucleationzones
canbedistinguishedespeciallyfor thecaser* = 0.94 km),
correspondingo severaldashedinesplottedon top of each
other Theslip accumulatesjuasi-staticallyat thoseregions
for a long time, thenthe slip acceleratesand dynamically
expandsfrom there. Notice that the nucleationsize scales
with A*, andin bothcaseghenucleationsizeis ~ 3.5 times
larger than h*. The model earthquaks generallynucleate
atthebottomtransitionbetweerthevelocity-wealeningand
velocity-strengtheningegions, becausat is therethat the
creepingregion transfersstresseso the seismogeniaepth,
loadingit up. By looking atthedistancebetweerthetips of
thedashedines,whicharel sapartin time, we canestimate
therupturepropagatiorvelocities. Theserangefrom slower
onesright after the nucleationup to almostthe shearwave
speedf 3 km/sfurtherin therupturedevelopmentMany of
the modelearthquaksarelarge andreachthe free surface,
sendinga wave of slip backto depth.

The provided examplesshow that our simulationalgo-
rithm dealsvery well with slow loading of the fault with
the equivalent of the millimeters per year plate rate, slov
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Figure5. Accumulationof slip versusdepthfor thecaseh* = 0.94 km, h* /h = 40. Thesolidlinesareplottedevery 5 years.
The dashedinesareplottedabove 18 km depthevery secondf the maximumvelocity anywhereon the fault exceed€.001
m/s. Themodelresponseonsistf large, essentiallyperiodiceventsrupturingthewhole fault. Thenucleationsizeis ~ 3.2
km.

Depth (km)

Slip (m)

Figure 6. Accumulationof slip versusdepthfor the caseh* = 0.235 km, h*/h = 40. The solid lines areplottedevery 5
years.Thedashedinesareplottedabove 18 km depthevery secondf the maximumvelocity anywhereon the fault exceeds
0.001m/s. The modelresponseonsistof a repeatedair of largerandsmallerevents. The nucleationsizeis ~ 0.8 km. In
comparisorwith Figure5, notethedifferencen the systembehavior andthe changen thenucleationsizeash* is changed.
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Figure 7. Maximumslip velocity on thefaultasafunctionof time for (a) A* = 0.94 km and(b) A* = 0.235 km. Individual
ruptureeventscollapseontoastraightline onthistimescaleof hundredof years.Themaximumslip velocitiesreachedliuring
dynamicrupturesareof the orderof 10 m/sfor largereventsand1 m/sfor smallereventsin the Figure 7b. The maximum
slip velocity in betweerthe dynamiceventsis ~ 10~% m/s,which correspondso the platevelocity of 35 mm/yr. Readle-05

as10-5.

eventnucleationanddynamicslip with kilometersper sec-
ondrupturevelocitiesandmetersper secondslip velocities.
The resultsshovn are well-resohved numerically We now

discussthe choicesof numericalparameterghat produce
thesesimulations.

7.2. Parameter Selection for Well-Resolved Simulations

As explainedin sections3 and 4, the choiceof the pa-
rametem = h*/h is crucialfor the simulationstability, ac-
curag, andtractability Togetherwith the selectionof A*
and), this parametedetermineshenumberNy, of thedis-
cretizationpointsrequired(andhencethe problemsize)and
thecell sizeh throughNee = A/h = nA/h* andh = h* /1.
If Bmin from the expressiorfor the minimumtime step(16)
is keptunchangedtheparameter, canalsobeconsidereds
controllingthe smallestime discretizatiorallowed. For the
exampleshere,we find thatn = h*/h = 40 producessta-
ble resultsthat are closely matchedby the resultsobtained
with 5 = 80 (hencecorvergencethroughgrid reductionis
achiered). n = 20 provideslesssatishctoryresolution. As
an illustration, considerFigure 8, wherethe slip rate his-
tory during a part of the secondevent of the sequencevith
h* = 0.94 km is shavn for the point at 3 km depth. Al-
thoughin a differentproblemthe value of 5 requiredmay

be different, the above consideratiorillustrateshow to ap-
proachselectionof n = h*/h.

We usefmin Of 1/2, giving Atmin = Atcen/2. For the
convolution truncation,we choosethe elastodynamidime
windows by specifyingT,, (1) = 2T or T, (1) = T with
T\ = A/c, andg,, = 4, confirmingthesevaluesby vary-
ing the parameterdo make surethe resultsdo not depend
ontheir choice.Notethatsincethereplicationperiodin our
modelis much larger than the region failing dynamically
T (1) = 2T} is quitealargewindow for thismodel,andal-
mostidenticalresultscanbeobtainedby usingT,, (1) = T).
Larger valuesof the elastodynamidime windows in this
modeltendto increase¢he maximumvelocitiesachieved,by
a small amount,but do not noticeablyinfluenceother fea-
tures,suchasthe amountanddistribution of slip or therup-
turevelocities.

The fact that ¢,, can be chosenas small as 4 in this
problemprovidesa hugecomputationabain. Let usillus-
tratethat for our examplewith ~* = 0.94 km. To achieve
n = h*/h = 40, we needN. = 8192 elementsalongthe
replicationperiod. Thisis alsothe numberof Fouriermodes
for which we have to computethe convolution integrals at
eachtime step(andhenceto storeslip velocity history suffi-
ciently backin time). For moden = 1, with T}, (1) = 2T}
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Figure 8. Slip velocity history at 3 km depthasa function of time for the secondeventin the sequencevith h* = 0.94
km. Zerotime is choserarbitrarily for plotting corvenience Theresolutionh* /h = 40 givesessentialljthe sameresultsas

h*/h = 80. Thecaseh* /h = 20 is lesssuficiently resohed.

and Bmin = 1/2, the numberof valuesstoredat spacing
of Atmin IS NeleTw(l)/(T)\,Bmin) = 4Nge = 32,768. If

a constantwindow were usedfor all modes,this would be
the numberof requiredvaluesfor eachFourier mode,and
we would needtwo arraysof the size[32, 768 x 8192], one
for the Fourier coeficientsandthe otherfor the valuesof

the discretizedkernel. At eachtime stepwe would have to

usethesearraysto computethe convolution integrals. With

¢w = 4 and mode-dependerntime windows, the number
of valuesneededto be storedand usedat eachtime step
decreasesignificantly for higherFourier modes. We pack
more thanone modeinto mostcolumnsof the arrays,get-
ting, for this particularexample the sizeof the arraysdown

to [32, 768 x 26], which resultsin a very substantiateduc-
tion, by morethana factorof 300,0f memoryandcputime
for doingcorvolutions. Thisis consistentvith our orderof-

magnitudeconsiderationin section6.

Our evolution time stepselectionfollows criterion (11)
and (15)-(17). With the choice of other parameterdis-
cussedthe minimum evolution time stepallowed, Atyin,
is =~ 0.004 sfor thecaseh* = 0.94 km and= 0.001 s for
thecaseh* = 0.235 km. We canunderstanavhy suchsmall
valuesareneededy recognizingaswe did establishingri-
terion (11), thatslip in onetime stepmustbe comparable
(andpreferablysmaller)thanthe characteristislip distance
L of thefriction law, to resole the statevariableevolution.
SincethesimulatedL is of ordermillimeters(Figured4a)and

1le+06

i i

100 1

10000

Evolution time step (s)

0.01 .

1 1 1 1
500 600 700 800
Simulated time (years)

Figure 9. Valuesof evolution time steps(in secondsplot-
ted asa function of the simulatectime in yearsfor the case
h* = 0.94 km. Variabletime steppingworks well, making
the time stepspanmorethan8 ordersof magnitudein this
simulation,consistentlywith thechangeén theslip velocity.
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the largestslip velocitiesare of ordermetersper second,t

is clearthat the smallesttime stepsshouldbe of the order
of onethousandthof a secondaswe have here. Note that
oncethe dynamic propagationbegins, large slip velocities
at the rupturefronts determinethe time stepsize,andit is

almostalways equalto the minimum time step Atin, SO
thattherapideventpropagations essentiallymodeledusing
constantime steps. Preventingthe time stepfrom becom-
ing smallerthan At.,;;, may alsomeanthat the statevari-

able evolution is occasionallynot ideally resohed right at
the rupturepeak,but in all the caseswe have checled, not
resolving L only occasionallyat the very tip of the rupture
doesnot changeheresultsin ary significantway.

For the slow deformationperiodsin betweendynamic
rupture events, the time stepstaken are quite large. Fig-
ure 9 shows the valuesof evolution time stepsfor the case
h* = 0.94 km. We seethatthe time stepsspanmorethan
eightordersof magnituden this simulation.Conditiong(12)
or (14) do a very goodjob restrictingthe time stepsduring
slow deformation.If they areviolated,the computatiorbe-
comescorrupted. We canshaw this by relaxingthe condi-
tions severaltimes, thatis, by selectingthe time stepusing
(11) and (15) - (17) as before, but with coeficients¢; in-
creasedy a certainfactor, althoughstill insistingthat¢; is
notlargerthat1/2. Figure 10ashavs the maximumvelocity
for the caseh* = 0.94 km anda factorof 2 increaseand
Figure 10b for a factor of 5 increase of the time stepsin
the sensediscussedbore. Comparingto Figure 7a, which
shavs thewell-resohedresponsewe seethatnumericalin-
stabilitiesstartto appearat slow sliding velocitiesfor mod-
estlyincreasedime steps(Figure 10a),while for the factor
of 5 increasehe responsdooks very complex, with numer
ouseventsof differentmaximumvelocities(Figure10b),all
of which are artifacts of the impropertime discretization.
Figurellshawsslip accumulatiorfor afactorof 3 increase,
with somesmall”events”appearindlike theoneat~ 19 m
slip) andaperiodiclarge events. Thosefeaturesare caused
by theimproperresolutionin time; thetrueresponsén this
caseis the periodicsequencef large eventsshovn in Fig-
ure5. Improperspacediscretizatioralsoproducesartificial
compleificationof themodelresponsegasdiscussedy Rice
[1993] andBen-Zion and Rice [1995,1997].

8. Discussion

As the consideredexamplesshaw, the algorithm pre-
sentechereis capableof rigoroustreatmenbf long-duration
deformationhistorieswith continuing aseismiccreepslip-
pagein velocity-strengthenindault regionsthroughoutthe
loading period, with gradual nucleationof model earth-
gualesfollowed by dynamicpropagationof ruptures,and

with rapid postseismicdeformationafter suchevents. The
algorithmis formulatedfor generalate-andstate-dependent
friction laws, andthe positive direct effect obsened exper
imentally and representedy suchlaws is decisve for its
successluringlongintervalswith essentiallyquasi-statice-
sponseandaseismicslip.

The algorithm employs a number of importantideas.
Separatiorof the stresstransferfunctional into static and
dynamicpartslocalizesthe effectsof the prior deformation
historyin corvolutionintegralson slip velocity with rapidly
decayingkernels. Truncationof thesecorvolutionsis justi-
fied by rapid decayin time of the convolution kernelsand
allows us to simulatelong processesvithout the necessity
to dealwith all prior deformationhistory at eachtime step.
Variabletime steppingmakesthe numberof time stepsdur-
ing slow deformatiomperiodsnumericallymanageablehile
still capturingthe detailsof boththenucleatioranddynamic
propagatiorphasesProperspaceandtime discretizatioren-
suresreliability of the resultswhich canbe verifiedthrough
spaceandtime grid refinement.The methodologyhasbeen
presentedisingthe 2-D antiplanespectraformulation. The
describedporoceduresanbereadily extendedto the 2-D in-
planeand 3-D spectralformulations. They canalsobe ap-
plied at leastin partto discretizedmodelsbasedon space-
time boundaryintegral formulations,as we briefly discuss
in Appendix B, wherewe further suggesthat suchformu-
lationscould befoundedon kinematicmodelinginput from
moreversatilemethoddik e finite differencepossiblybeing
practicalin casesfor which the spectraldiagonalizationof
convolutionsdoesnot apply.

The numericallymostchallengingpartsof the algorithm
arecalculationof thecorvolutionintegralsand,in thespec-
tral formulations, fast Fourier transforms(FFTs). If the
elastodynamid¢ime windows usedto truncatethe convolu-
tionsarelong andtruncationaccordingto the modedoesnot
shortenmuchthe time windows for highermodes thenthe
convolution evaluationgake mostof thecomputationatime
andevenminoroptimizationsof convolutionevaluationscan
be very beneficial. If, on the otherhand,the time windows
aremuchshorterfor highermodesaswe have beenableto
usefor our depth-ariableexamplehere thenthe FFTsstart
to usea comparabldraction of the computationatime, and
anefficient FFT routinecanmale a significantdifference.

It is importantto ensurethatthe resultsof the simulation
do notdependon the discretizatiorandothernumericalpa-
rameters.For example,we could concludethat the model
responsés complex (Figure10b)or thatthe eventsareape-
riodic (Figure 11), whereasbetterresolutionin time leads,
in this caseto a periodicsequencef largeevents(Figuress
and7a). Theverificationof theindependencef theresults
on numericscan be donethroughestablishingcorvergence
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of theresults(or at leastof their qualitatve featureslasthe
parametersf the simulationarerefined. This is often nec-
essaryevenwhenthe outputlooks smoothandplausible,as
it canstill be qualitatively differentfrom the true response
of themodel(e.g.,Figure 11 versusFigure5). Usually, the
plots of slip velocity or stressreveal muchmore aboutthe
numericalstability andcorvergencethantheir slip counter
parts.

The examplespresentedare basedon a rather simple
model,with thefault propertiesuniformthroughoutheseis-
mogenic (steady-statevelocity-wealening) zone. The re-
sponseconsistsof periodic sequencesf events(Figures5
and6), andsucharegularresponséasallowedusto concen-
trateon developingarigorousandefficientnumericalproce-
dure.We verify, underthe conditionsof muchbetterresolu-
tion andwider parameterange the resultof Rice and Ben-
Zion [1996] andBen-Zion and Rice [1997]thatthedynamic
effectsalonearenot sufficient to produceeventcomplexity.
Moreover, we find periodicresponsen somecaseswhere
the earlier studieshave found, evidently dueto insufficient
numericalresolution chaoticsequencesf largeevents.

In our considerationthe characteristicslip distanceL
of the rate- and state-dependentriction is taken to be
much larger than the laboratoryvaluesto achieze numer
ical tractability To predict the model behaior with the
laboratory-dened valuesof L, it is importantto obsene
trendsaswe decreasd.. ComparingFigures5 and6, with
L in the caseof Figure 6 being 4 times smallerthan that
of Figure 5, we seethat the reductionin the characteristic
slip distanceintroducedsmall eventsat the baseof the seis-
mogeniczone. Furthertwofold reductionin L producesa
sequencef onelargeandonesmalleventmuchlik e Figure
6 (althoughwith smallerslip per event), but it is possible
that still much smallervaluesof L would introducemore
elaboratesequencesyith moresmallevents.

To producerealisticallycomple< behaior, additionalfea-
tureshave to be introduced. We would expectthat adding
strongfault heterogeneities1 the form of (highly) nonuni-
form normalstressand/orfrictional propertieswould natu-
rally compleify the modelresponse Accountingfor shear
heatingis also very important. It would introduce pore
pressuredevelopment,which would adda secondwealen-
ing mechanismdue to the evolution of the effective nor-
mal stress. Interactionof two wealeningmechanismdas
compl«ified eventssequencefor amodelstudiedby Shaw
and Rice [2000], in a certain parameterangefor the ad
hoc type of friction law with two slip-wealening distances
used. Anotherconsequencef the shearheatingwould be
temperature-inducetiime variationsin thefrictional proper
ties, which may alsocontribute to eventcompleity. These
problems,aswell asotherimportantproblemssuchasthe

earthquak nucleationprocessor patternsof rupturepropa-

gationin eventsnucleatechaturallyasa partof a sequence,
canbe studiedwithin the methodologypresentedn this pa-

per

Comparisorof the larger andthe smallereventsfor the
caseh* = 0.235 km supportghe view thatlarge eventsare
justsmalleventsthatrun away andshavs how the runavay
can be preventedby prior stressrelease. Let us consider
the 3-D plots of slip andslip velocity for individual events
shawvn in Figures12 and13. Thedistribution of slip before
eachof theshovn modelearthquaks(Figurel2)reflectsthe
slip in previous events,the creepingvelocity-strengthening
regionson bothendsof thefault segment,anda clearnucle-
ation zone,which actually extendslong backin time. The
slip velocity plots (Figure13) shav how thedynamicevents
develop. Oncean eventnucleatestwo rupturefronts prop-
agatein the oppositedirections. Oneof themis arrestedn
the velocity-strengtheningegion at the bottomof the fault.
In the caseof thelargerevent(Figure13a),theotherrupture
front reflectsoff the free surfaceandrunsdown, rerupturing
theseismogenidepth with dynamicwavesof slip propagat-
ing on the surfaceof the rupture. The spikeson the rupture
front areanartifactof the outputtingandplotting procedure;
for a given spacelocation as a function of time andfor a
givenmomentin time asa function of spacetheslip veloc-
ity profilesaresmooth.Theplotting procedurealsoreduces
the maximumslip velocitiesachieved, owing to insufficient
resolutionof the imagesurface. In the caseof the smaller
event (Figure 13b) the rupturegetsarrestedong beforeit
reacheghe free surface. From the slip distribution in Fig-
ure 12bwe noticethatthesmallereventfailsto advanceinto
theregion of largerslip (andhencehigherstresgelease)eft
by the previous (larger) event. ComparingFiguresl2aand
12b,aswell asFiguresl3aand13b,we noticethatthe slips
andslip velocitiesduring andright after the nucleationof
thesmallereventlook just lik e the onesfor the beginning of
thelargerevent. This meanghatobservingsignalsfrom the
nucleationandbeginning of suchanevent,we would not be
ableto tell whetherthefinal sizeof theeventwill belargeor
small.

We canusethe developedmethodologywhich incorpo-
ratesboth truly slow tectonicloading and all dynamicef-
fects,to evaluatesimplifiedapproached.et usconsidetwo
suchapproachesyl) a procedurewith truly slow tectonic
loading but with a partof the dynamiceffects(namely dy-
namicstresgransfersjgnored,and(ll) aprocedurewith all
dynamiceffectsincorporatedut muchfasterdoading.

To getaprocedureof typel, wetake T,,(1) = T, = 0,
whichcoincideswith thequasi-dynami@pproximatiorused
by Rice [1993] and Ben-Zion and Rice [1995]. Figure 14
shaws the resultsfor the caseh* = 0.94 km. Comparing
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Figure12. Slip in individualeventsfrom thesequencén Figure6, h* = 0.235 km, for (a) alargereventand(b) thefollowing
smallerevent. Thetime axisspan<20 secondswith zerotime choserarbitrarily for plotting corvenienceTheslip axisspans
6 m in bothcases Noticethe clearnucleationzonethatextendsmuchfurtherbackin time. The smallereventin Figure12b
looksjustlik e the beginning of the largereventin Figure12a;it stopsby not beingableto advanceinto the higherslip/lower

stresgegionin themiddle of thefault. This supportgheideathatlarge eventsaresmalleventsthatrun away dueto favorable
stress/strengtbonditionson thefault.
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Figure 14. Accumulationof slip versusdepthfor thecaseh* = 0.94 km with T, = 0 (i.e., the"quasi-dynamic"approxima-
tion). Thesolidlinesareplottedevery 5 years.Thedashedinesareplottedabore 18 km depthevery secondf themaximum
velocity anywhereon the fault exceeds0.001m/s. Thereis no reflectedfront of slip from the free surfacewhich is present
whenthe wave-mediatedstresstransfersareincluded(Figure5). The slip per eventandthe slip andrupturevelocitiesare

smaller

|

i ilnf

! b |
e l
(AN \\‘

1w

Depth (km)

Slip (m)

Figure 15. Accumulationof slip versusdepthfor thecaseh* = 0.94 km with themuchlargerloadingvelocity V;,; = 35 x 10°
mm/year The solid lines areplottedevery 5 x 106 years. The dashedines are plotted abose 18 km depthevery second
if the maximumvelocity anywhereon the fault exceed€0.001m/s. (Theinitial conditionscould be tunedsothattheslip in
the middle of the lower velocity strengtheningegion is roughly the sameasat its bottom. The qualitative featuresof the
simulationareindependenof the initial conditions.) Notice that, comparedo the caseof tectonicloading (V1 = 35 m/s,
Figure5), thenucleationphasds very differentandtheslip pereventis morethantwice smaller
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with Figure5, we seethatthe wave effectsdisappeaasthey

should(thereis no slip wave reflectingoff the free surface),
therupturevelocitiesareslower (thetips of thedashedines
arecloserto oneanother) andtheslip velocitiesaresmaller
too, asis theaccumulatedlip perevent. We have examined
thepossibilitythatthe quasi-dynamicalculationgT,, = 0)

might approximatelyreproduceheslip pereventasin Fig-

ure5 if we could make the slip velocitiesfasterduring dy-

namicevents.To thatend,wedid aseriesof studiesn which
the numericalvalueof 1/2c in the radiationdampingterm
of elastodynamigelation (26) wasvariedin size. Reduc-
tion to approximatelyhalf the propervaluedid give rupture
propagatiorandslip velocitiesduring eventsthattendto be
of comparableorderto thoseof the properdynamicsimu-
lation (Figure5), but therewasvery little effect on the slip

per cycle, which remainedmuchasin Figure14. This sug-
geststhatthe greaterslip in Figure5 is significantlydueto

the discussedeflectedwave effectatthefree surface,afea-
ture which could not appearin the quasi-dynamicsimula-
tion. However, thereis no qualitative differencein the sys-
tem behavior, probablydueto the relative simplicity of this
model’s response.If the dynamiceffectswere more com-
plex, their elimination may have madea more significant
difference.

Finally, we considera proceduren which the plateload-
ing rateis only afew ordersof magnituddessthanrepresen-
tative seismicslip rates,which allows to usestandarcelas-
todynamicnumericalmethodologythroughout(like in the
work by Shaw and Rice [2000]). To this end,we changethe
loading velocity from V;;; = 35 mm/yrin our implementa-
tion exampleabove to Vj,; = 35 x 10® mmlyr, for the case
h* = 0.94 km, keepingother parameterghe same. The
resultantslip accumulatioris shovn in Figure 15, which is
very differentfrom themodelresponsevith thetectonic-like
loadingvelocity (Figure5). Theincreasan loadingvelocity
hastotally alteredthe nucleationprocessand location and
resultedin morethantwice smallerslip perevent(x 1.4 m
slip perevent,comparedo ~ 3.6 m slip pereventin thecase
of V1 = 35 mmlyr). TheloadingvelocitiesV,,;, = 35 x 10°
mm/yrandV,; = 35 x 10* mm/yr alsogive quite altered
(although,naturally lessso) nucleation andslips per event
of =~ 1.8 and2.3m, respectiely.

The evaluationof the simplified approacheshaws that
while accountingfor the properdynamicresponsecan be
veryimportant,simulatingslow tectonicloadingis alsocru-
cial for uncoveringthetruemodelresponseTheresultsalso
demonstrat¢hateventhoughsimplified approachemay be
unavoidablein somecasesthey have limitations that can
be uncoveredandremediedonly within a more generalap-
proachlike theonepresentedhere.

Appendix A: Derivation of Critical Stiffness
and Time Discretization Constraints Dictated
by Constitutive Law

To derive expression(9) for the critical stiffnessk., in
guasi-staticslip, let us considera spring-slidersystemmov-
ing steadilyat rate V*, with state§* = 6,(V*) andfric-
tionalresistance™ = 7,5(V*). If weimposea perturbation
V on the sliding velocity anduse7, §, andé to denotethe
correspondingperturbationsof other quantities,then from
thefriction law (7) we canwrite the linearizedconstitutve
responséo the perturbatioras

1% ~
~:A*_ *
T V*+C 0,
(Ala)
*L_ v * 1) B*
co_—f(co ﬁ')

where A*, B*, C*, and L are usedto denotethe partial
derivativesof thefunctionsin (7): 0y(V,8)/0V = A* [V*,
oY(V,0)/00 = C*, dp(V,8)/0V = —B*/LC*, with the
derivatives evaluatedat steadystate,and L given by (9b).
Thedefinitionsof A* and B* areequivalentto the morefa-
miliar A* = [VOr(V,0)/0V]y—v+ g—g..(v+), A* — B* =
[Vdres(V)/dV]y=y=.

At steadystate(d = 0) wehave 7 = (A* — B*)V /V*,
and thus the sign of (B* — A*) determineswhetherthe
systemexhibits steady-statgelocity wealeningor strength-
ening. A* and B* can, in general,dependon the steady-
statevelocity V*, butin themostcommonlyusedDieterich-
Ruina logarithmic forms of the rate- and state-dependent
friction laws, they are chosenas constantdimes effective
normalstresgaswe doin ourimplementatiorexample)and
areoftendenotedby A and B. The(quasi-staticklasticre-
sponseo the perturbatioris givenby

7=—kd, (Alb)

wherek is the spring stiffness. Eliminating 7 by combin-
ing (Ala) and (Alb), substituting¥ = 4§, and defining,
for simplification, nondimensionaluantitesD = /L,
© = C*9/B*, andT = V*t/L, we obtainthe following
simplesystemof two linear differentialequations:

{iorar p=ufe f. o
[ ]
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Qualitative behaior of such systemsdependson the
eigervaluesof the matrix M. If the real partsof all the
eigervaluesarenggative, the solutionvanishesith increas-
ing time, andif at leastone eigervalue hasa positive real
part,the solutiongrows without limit. Whenthelargestreal
partis zero,long-timeperiodicmotionresults.In thesystem
(A2), the perturbationgrows (exponentially)for p < 0 and
decaydqexponentially)for p > 0, where

_ Ll _B -4
P= 3= I |

For velocity strengthenindriction, (B* — A*) < 0, wehave
p > 0 andthe perturbationalways decays. For velocity
wealeningfriction, (B*—A*) > 0, thebehaior depend®n
thesignof theexpressionin bracletsof (A3), which defines
thecritical stiffness

B* —A* [ Vdng(V)/dV
L L S

andthe perturbationgrows in time for k£ < k., anddecays
in time for k > k.., asclaimedin (9a).

To derive the constraint(12) on the evolution time step-
ping,weanalyzeasasimplemodelcasegxplicit integration
(with aconstantime stepAT = V*At/ L) of thegoverning
systemfor theperturbation(A2). In the system(A2), inertia
effectsareignored,but they arenegligible at low slip rates.
Thediscretizedsystemis givenby

(A3)

kcr =

;o (Ad)

{omzayar f=uler ) vsa
or
fon mefer ) o
with
| - KLAT/A*  —B*AT/A*
Q= [ KLAT/A* 1+ (B — A*)AT/A* ]

(A5c)

We would lik e this discretedynamicsystemto have the
samestability behavior asthe continuous(in time) system
(A2) does. The behavior of suchdiscretedynamicsystems
as(A5) canbeunderstoody finding the eigervaluesof the
governingmatrix ) andcomparingtheir absolutevaluesto
unity. Theeigervaluesof matrix () aregivenby

1 /1 kL
D == _—— —_ 2 _—
A =1+ ( 2P EN\ 7P A*> AT, (A6)

with p definedby (A3).

Consideringeigervalues(A6), we concludethe follow-
ing. If p < 0, which correspondgo the situation with
steady-statgelocitywealening(B* — A*) > 0 andimprop-
erly sparseyrid (giving k— (B*— A*) /L = k—k¢, < 0), the
eigervalueshave absolutevalueslarger than unity, andthe
perturbationgrows, consistentlywith the continuouscase,
regardlesof the chosentime stepAT. For p > 0, which
correspondso eithersteady-stateelocity strengtheningor
steady-statevelocity wealening with a sufficiently dense
grid, the continuouscasepredictsdecayof the perturbation.
Indeed,the discretizedcasefollows this stablebehavior if
thetime stepAT = V*At/L is suficiently small. Thatis,
in the casep > 0, the absolutevaluesof the eigervaluesis
lessthanunity, andhencethe perturbatiordecaysif the (di-
mensional}time step At satisfiesthe conditionswritten in
thetext asequationg12).

Appendix B: Remarkson Extension of
Methodology to Cases With No Trandational
Invariance

Ourmethodologycanbeextendedo generakasesvhich
lack translationalinvariance, to accommodateproblems
suchasa fault obliqueto the free surfaceor heterogeneity
of bulk materialproperties(like a layeredEarth structure).
If aboundaryintegral equatioris discretizedwith Ny, sam-
ple points (nodes)over the fault domain,the stresstransfer
functionalwill still be relatedto the slip by an expression
which canbe putin thevelocity form

Nep t
filt)y =— Z [K;;05() —/O Cii(t —t")d;(t"dt"], (BL)

wheresubscriptg andj denotevaluesdiscretizedn space.
Here [K] is the static elastic stiffnessmatrix, and [C(¢)]

is a matrix of convolution kernels. Thesecould emepge as
theresultof discretizinga boundaryintegral formulation,or

couldbedeterminedy standarcelastodynamifinite differ-

enceor finite elementcalculations.The calculationswvould

be purely kinematic,imposinga stepin slip at eachnode
singly (sayatnodej), overasingleelastodynamitime step,
andcalculatingthe stresshistoriesr; (t) atall othernodesi.

By analyzingthe 7;(¢) using (1) and (B1), the K;; could
be extractednumericallyasthelong-termlimit of the stress
changesandthe C;;(t) determinedfrom the transientre-

sponseandtatulated.

Therelation (B1) is analogoudo (2) and (4), and most
ideasof thepresentedlgorithmmaybedirectly applied,in-
cluding the truncationof cornvolutions,the schemedo ad-
vancethroughatime step,andthe time stepselectionpro-
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cedure. One exceptionis the notion of shortertruncation
windowsfor highermodenumberswhich naturallyarisesn
thespectraformulationandgreatlyreducestorageaequire-
mentsandexecutiontime comparedo a uniformtruncation
window for all modes,asdiscussedn section6. Unfortu-
nately thereis nodirectly similar notionfor thegenerakase
(B1).

The following conceptmay; however, provide the exten-
sion of the spectralformulation to the generalcase(B1),
enablingthe possibility of shortertruncationwindows for
sometime convolutionsin (B1). We expectthat evenin
the absencef translationainvariancef we readinto (B1)
a step-in-timeslip distribution which varies spatially like
Re(e??), or like Re(ei(k#+m2)) in 3-D modelingof a fault
which spanstwo spacedimensionsz and z, thenfor high
|k|, or vVk? + m?2, therewould generallybe rapid decayof
the transientstressin approachto the staticlimit. In such
a case,the convolution could be truncatedearlier than for
lower |k| or vk2 + m2. Hence,the following procedure
can be explored, illustrated further for the 2-D case. The
N;p slips 6;(t) canbe represente@dsa linear combination
of Ny, independenbasisfunctions,eachwith progressrely
higherwave numberfeatures. While somewavelet expan-
sion may turn out to be a preferredway of accomplishing
that, a simpleillustration is provided by usingthe Fourier
sumlikein (3) for thed,; (¢t) and f;(¢). Usingthe R notation
of section5 for this representatiorand its inversion, with
d;=> R;,;Dm andF, = R,;fi, we cantransformthe

K3

. m
relation(B1) to

Fo(t) == [KnmDum(t)

m

(B2)
- / t Crm(t — ") Dy (t)dt'],
0

where

N

[Knma Chm (t)] = Z Z Ryi [Kija Cij (t)]Rj_Ti’

summationson ¢ and j extend over [1, Ng,] and on m
over[—Nyp/2, Ngp /2]. Onemay hopethattruncationtimes
Ty, (n,m) for Cpm(t) canbe chosenshorterfor the higher
wave numbersrepresentedby, say the maximumof |n| or
Im.

In implementingsuch an approach,one can determine
Kpm and C’nm(t) directly, without determiningk,,,, and
Cnm(t) first. Theresponseo theslip historyd;, whichis a
stepfunctionin time andFouriermodem (or modem of the
waveletexpansiorused)in spacewould bedeterminedand
hencevaluescorrespondingdo f;(¢) would beknown. Then

fasttransformswould be doneon thesecomputedvalues to
convertthemto historiesF,, (t). From(B2), component®f
Kpm andC,,,, (t) would begivenasK,,,, = —F,(co) and
Crm(t) = F,(t) — F,(c0), for the valueof m usedin the
slip history selected. The procedurewould have to be re-
peatedor all valuesof m.

For caseswithout translationalinvariance,there is no
simpletransformatiorto diagonalizethe matrix [C'(¢)] from
(B1), andthe matrix [C’(t)] from (B2) will generallynot be
diagonal. For the problemsthat have translationalinvari-
ance(or canbe mappedo suchby additionof a mirror im-
age),the matrix [C(¢)] in the space-timeormulation (B1)
is still nondiagonaleventhoughit acquiresa specialform
with C;; = C);_;. However, in this casethe spectralfor-
mulationconsideredn section2 diagonalizeghe matrix of
the corvolution kernels. This translatesnto substantiake-
ductionin the numberof time convolutionsand makesthe
spectralformulation of a translationallyinvariant problem
(suchas (2) and(4)) computationallymuch more efficient
thanthespace-timdéormulationof thesameproblem,or than
ary formulationsof problemsthatlack translationainvari-
ance.This is true despitethe additionalcostof the spectral
formulation, which needsmore degreesof freedom. Sup-
posethat the replicationdistanceX of the spectralformu-
lation is ¢ times larger than the domainwhich we would
like to simulate(so that Neie = gNsp), andthat the time
for computationof onetruncatedtime cornvolution integral
scaledinearly with the numberof spaceelementsnvolved
(asis true whenall truncationwindows are comparabldo
thetime for the elasticwavesto propagatéhroughthe simu-
latedregion). In aformulationwith a nondiagonamatrix of
corvolutionkernelswe needNZ, time corvolutionsto com-
putethevaluesof the(discretizedfunctional f for all nodes.
This requiresthe numberof floating point operationspro-
portionalto N2, x Ny, = N3,. In thespectraformulation,
suchas(3) and(7), dueto thediagonalizationywe needonly
Neie = gNgp time corvolutions,onepereachFouriermode.
This translatesnto the numberof operationsproportional
to ¢°NZ,. The FFTsusedin the spectralformulation add
the numberof operationgproportionalto ¢ Ny, log, (¢ Nsp),
sothatthe overall numberof operationsn the spectralfor-
mulationis still proportionalto q2N82p- Sinceq is usually
smallnumber suchas4 to 8, andtypical valuesfor Ny, are
512to 65536 ,comparingV;, andg® N2, immediatelyshovs
thatthe spectralrepresentationf a translationallyinvariant
problemis computationallynuchmoreefficient.
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